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1. INTRODUCTION 
With the advent of ocean exploration toward the deep water, marine environment is becoming worse. The 

nonlinear effects on a multitude of offshore structures are significant. Due to these nonlinear effects the 
structure no longer follows a harmonic oscillation pattern and a time domain method is a more appropriate 
choice for predicting the body motion. Among the time domain methods, the one proposed by Cummins 
(1962) is effective and easily implemented. Following this method, the second-order sum or difference 
frequency exciting forces are calculated based on the QTF in the frequency domain. For a floating body, the 
body motion at the first-order contributes to the exciting force at the second-order. However, to the best of the 
author’s knowledge, an accurate way to take account these components associated with first-order body 
motion into the second-order exciting forces has not been available if the Cummins’s method is used. This is a 
basic motivation of the present study. 

2. THE QUADRATIC TRANSFER FUNCTION (QTF) 
In the presence of bichromatic waves with frequencies ωp and ωq and amplitudes Ap and Aq, the total 

first-order velocity potential can be written in the form: 
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For wave interaction with a floating body, the first-order velocity potential at the frequency ωp is further 
decomposed into the incident potential, the diffraction potential, and the radiation potential as: 
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where ( )1p
jξ  is the first-order translational or rotational complex displacements in the jth direction. 

Under the excitation of bichromatic waves, the second-order exciting force has the components at the sum 
and the difference frequencies of the first-order waves. In the present study the components of second-order 
exciting force in the kth direction at the sum and the difference frequencies of ωp and ωq are decomposed into 
several parts: 
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In the above equation ( )2pq
kh ±

 is consistence with the definition of QTFs of a fixed body. The complete 
solution of ( )2pq

kh ±

 has been derived by some researchers (e.g., Kim and Yue (1990) and Eatock Taylor and 
Kernot (1999)) and will not be further elaborated in the present study; ( )1

,
pq

k jh ±  represents the second-order 
exciting force due to linear unit incident waves with frequency ωq and first-order unit body motion in the jth 
direction with frequency ωp; ( )0

,
pq

k jlh ±  represents the second-order exciting force due to first-order unit body 
motion in the jth direction with frequency ωp and first-order unit body motion in the lth direction with 
frequency ωq . The present study focuses on how to compute ( )1

,
pq

k jh ±

 and ( )0
,

pq
k jlh ± .  

The nonlinear wave force on a body can be obtained by direct integration of hydrodynamic pressure over 
the body surface after velocity potential has been obtained. To obtain ( )1

,
pq

k jh ±

 and ( )0
,

pq
k jlh ± , corresponding 

boundary value problems should be solved firstly. 
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3. THE BOUNDARY VALUE PROBLEM 
The total velocity potential Φ can be expanded into a perturbation series in terms of the wave slope parameter 

ε. The governing equation for the velocity potential is the Laplace equation. A Cartesian coordinate system with 
the (x, y) plane in the quiescent free surface and the z axis pointing upward is used. 

Consider the following two cases for the velocity potential. In the first case a body is placed in linear 
incident waves with frequency ωp and amplitude Ap, and the body moves in the jth direction with frequency 
ωq and amplitude ( )1q

jξ . The first-order potential (1) ( , )tΦ x  can be expressed as 
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In the other case incident waves do not exist and the body moves in both the jth and the lth directions with 
frequencies ωp and ωq and amplitude ( )1p

jξ  and ( )1q
lξ  respectively. The first-order potential (1) ( , )tΦ x  can be 

expressed as 
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Similar to the first-order velocity potential, the second-order velocity potential can be decomposed into the 
incident, the diffraction, and the radiation potentials. The second-order radiation potential includes the outgoing 
waves due to second-order body motion only and identical to that of the first-order radiation problem but at the 
sum and the difference frequencies respectively. The second-order radiation problem does not contribute to the 
second-order exciting wave force and hence will not be further elaborated. A convenient and consistent 
definition of the second-order diffraction potential (2)pq

Dφ ±  is to let it represent the combined diffracted potential 
due to the second-order incident waves as well as the forcing terms of all the quadratic contributions of the 
first-order quantities on the free surface and on the body surface. In the two cases under discussion the 
second-order incident waves are both not considered. Under the above decomposition, all difficulties in the 
computation of second order effects are confined to the diffraction problem, and correspondingly the boundary 
conditions for (2)pq

Dφ ±

 are 
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(2) ( )pqQ ± x  and (2) ( )pqB ± x  are forcing terms of the quadratic products of the first-order bichromatic quantities on 
the free surface and the body surface. The expression of (2) ( )pqQ ± x  in the first and the second cases are shown 
in Eq.7 and Eq.8 respectively. 
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In above expressions ( ) ( ) ( ) ( )1 1 1( ) ( ) ( ) 1, 2p p p
B I D pφ φ φ= + =x x x . The superscript * indicates the complex conjugate. 

The expression of (2) ( )pqB ± x will be shown at the workshop. A boundary-integral equation method is then used 
to determine the second-order diffraction potential and the method will be elaborated in the next section. 



4. A BOUNDARY-INTEGRAL EQUATION METHOD FOR THE SECOND-ORDER 
DIFFRACTION POTENTIAL 

The first-order and the second-order boundary value problems can be solved by the boundary integral 
equations formulated by applying Green’s theorem to the fluid domain. The second-order diffraction problem is 
much more difficult. The oscillating source is used as Green’s function, which satisfies the linear free surface 
boundary condition, the radiation condition at infinity and the impermeable condition on the horizontal seabed. 
Then by introducing Green function G± corresponding to an oscillating source at the frequencies p qω ω± , and 
applying Green’s theorem to (2)pq

Dφ ±

 and G±, a Fedholm integral equation of the second kind for the second- 
order diffraction potentials can be obtained. 
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Here x and x0 are the field and the source points, respectively. Evaluation of the infinite free surface integral is 
the key point in processing the second-order solution. In the present study the approach proposed by Chau and 
Eatock Taylor (1992) is used to treat the infinite integral. 

After solving the first-order and the second-order potentials, the second-order pressure in the fluid domain 
can be obtained according to Bernoulli equation. Then the second-order exciting force ( )2
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As an example, calculation is carried out for a truncated cylinder with a radius of 1m and a draft of 3m in a 
water depth of 10m. Fig .1 shows some results of ( )1

,
pq

k jh −

 and ( )0
,

pq
k jlh −  for the cylinder. 

5. SECOND-ORDER WAVE EXCITING FORCE IN TIME DOMAIN 
The second-order exciting forces on a body due to stationary Gaussian random seas can in general be 

expressed as a two-term Voterra series in the time domain:  
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where ( ) ( ) ( )2 1 1
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can be obtained by Fourier transform of ( ) ( ) ( )2 1 1
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6. NUMERICAL RESULTS FOR A TRUNCATED CYLINDER 
According to Cummins (1962)’s method, the body motion equation in the time domain can be written as: 
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For comparing with the frequency domain result, we divide the body motion into the first and the second order 
terms. The second-order body motion in the time domain can be simulated by solving the following equation: 
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( )pq
kE ±2  is associated with the first-order rotational displacements and the moments of inertia of the body. 

Calculation is carried out for a truncated cylinder. Proper structural damping and linear stiffness are 
considered during the calculation. Fig.2 shows the second-order difference frequency body motion results at 
ωp=3.0rad/s and ωq=2.8rad/s. The results based on the QTFs of the present method agree well with the 
frequency domain results while differ much from those based on QTFs of fixed bodies. Even though the 
first-order motion is small in magnitude, its contribution to the second-order motion is considerable. Above 
findings suggest that the study of QTFs of moving bodies is necessary and the influence of first-order motion 
to the higher order motion should be taken into account. 
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Fig.2 Second-order difference frequency body motion results. 
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