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Highlights:

• Using the method of matched eigenfunction expansions for the velocity potentials, the mathematical problem
is handled for solution.
• Reciprocity relations are newly found which relate the damping coefficients of the submerged body to the
far-field form of the radiation potentials.

1. Introduction

Ice sheets in nature may have inhomogeneities as cracks that can be open and free or partially frozen. There
are many publications on the scattering of flexural gravity waves by a straight crack. For example, review of
these investigations can be found in Evans and Porter [1] and Karmakar et al. [2].

In this paper, the linear 2-D water-wave problem describing small oscillations of a horizontal cylinder is
considered. The surface of a fluid is covered by two semi-infinite thin elastic plates with different properties such
as density, thickness, and rigidity. The interface between floating plates is considered as a narrow straight-like
crack which is parallel to the cylinder axis. In order to model varying characteristics of a partially frozen crack,
two springs linking the ice sheets are introduced. The effect of a crack on hydrodynamic load of submerged
cylinder is investigated.

2. Mathematical formulation

The problem is analyzed in 2-D Cartesian coordinate system with the x-axis directed along the undisturbed
mean water surface perpendicular to the cylinder axis, and the y-axis pointing vertically upwards; see Fig. 1.
The fluid is assumed to be inviscid and incompressible, its motion is irrotational. Two semi-infinite elastic
plates Λ1 (x < 0) and Λ2 (x > 0) float on water of depth H. The plate drafts are ignored. The left plate
Λ1 is characterized by Young modulus E1, thickness d1, density ρ1, Poisson’s ratio ν1; the right plate Λ2 has,
respectively, the following characteristics: E2, d2, ρ2, ν2. These plates may be connected by a vertical linear
spring and a flexural rotational spring with stiffness k33 and k55, respectively, at x = 0.

Fig.1 Schematic diagram

The wave motions are generated by the small oscillations of submerged rigid body with wetted surface S at a
frequency ω with amplitudes ζj (j = 1, 2, 3) for the sway, heave and roll problems, respectively. Under the usual
assumptions of linear theory, the time-dependent velocity potential can be written as

Φ(x, y, t) = ℜ

[

iω

3
∑

j=1

ζjϕj(x, y) exp(iωt)

]

where ϕj(x, y) are complex valued functions and t is time. The radiation potentials ϕj(x, y) satisfy the Laplace
equation in the fluid domain

∇2ϕj = 0 (−∞ < x <∞, −H < y < 0) (1)



except in the region occupied by the cylinder.
It is assumed that the plates Λ1 and Λ2 are in contact with the water at all points for all time. The upper

surface boundary conditions for the fluid in contact with the plates are

(
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)
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− ρω2ϕj = 0, (x < 0, y = 0) (2)

(

D2
∂4

∂x4
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∂ϕj

∂y
− ρω2ϕj = 0, (x > 0, y = 0) (3)

where Di = Eid
3
i /[12(1 − ν2

i )], Mi = ρidi (i = 1, 2), g is the acceleration due to gravity, ρ is the fluid density.
The bending moment and the shear force at the connecting edge satisfy the edge conditions
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The edge conditions (4), (5) are the most general boundary conditions for partially frozen cracks. Taking the
limit values for k33 and k55, we can also model the free-end (k33 = 0, k55 = 0), hinge-connector (k33 = ∞, k55 =
0) and rigidly joined plates (k33 = ∞, k55 = ∞) cases.

The boundary condition on the closed smooth contour of the submerged body S has the form:

∂ϕj/∂n = nj (x, y ∈ S) (6)

Here, n = (nx, ny) is the inward normal to the contour S. The notations

n1 = nx, n2 = ny, n3 = (y − y0)n1 − (x− x0)n2 (7)

are used where x0, y0 are the coordinates of the center of the roll oscillations.
The boundary condition at the bottom is

∂ϕj/∂y = 0 (−∞ < x <∞, y = −H) (8)

In the far field a radiation condition should be imposed that requires the radiated waves to be outgoing.

3. Method of solution

In order to solve the boundary-value problem (1)-(8), we introduce an unknown mass-source distribution σj(x, y)
over the contour S. We can now represent the radiation potentials at any point of the fluid in the form

ϕj(x, y) =

∫

S

σj(ξ, η)G(x, y; ξ, η)ds (9)

The Green function G(x, y; ξ, η) satisfies the following equation

∇2G = 2πδ(x− ξ)δ(y − η)

with the boundary conditions analogous to (2)-(5), (8) and the radiation condition in the far field, and δ is the
Dirac delta-function.

In order to obtain the solution for the Green function, the fluid domain is divided into two regions: the left
region Γ1 (−∞ < x < 0, −H < y < 0) and the right region Γ2 (0 < x < ∞, −H < y < 0). The value of
G(x, y; ξ, η) in Γi is denoted by Gi(x, y; ξ, η) (i = 1, 2). These functions will be sought as expansions in terms
of eigenfunctions of corresponding boundary value problems:

G1 = α1G
(1)
0 +R0e

iq0xψ0(y) +

∞
∑

m=−2
m 6=0

Rme
qmxψm(y) (x < 0) (10)

G2 = α2G
(2)
0 + T0e

−ip0xf0(y) +

∞
∑

n=−2
n6=0

Tne
−pnxfn(y) (x > 0) (11)

where
ψ0 = cosh q0(y +H)/ cosh q0H, ψm = cos qm(y +H)/ cos qmH



f0 = cosh p0(y +H)/ cosh p0H, fn = cos pn(y +H)/ cos pnH (m,n = −2,−1, 1, 2, 3, ...)

The constants qm’s satisfy the dispersion relations

K1 = q0(1 + L1q
4
0) tanh q0H = −qm(1 + L1q

4
m) tan qmH (m = −2,−1, 1, 2, 3, ...) (12)

with L1 = D1/(gρ − ω2M1) and K1 = ρω2/(gρ − ω2M1). The real positive root q0 describes progressive
wave. The roots q−2 and q−1 are complex conjugates with positive real parts, qm’s are real and positive with
(m− 1)π/H < qm < mπ/H (m = 1, 2, 3, ...). The constants pn’s satisfy the dispersion relations similarly (12)

K2 = p0(1 + L2p
4
0) tanh p0H = −pn(1 + L2p

4
n) tan pnH (n = −2,−1, 1, 2, 3, ...)

with L2 = D2/(gρ− ω2M2) and K2 = ρω2/(gρ− ω2M2).
If the source is placed in region Γ1 (ξ < 0), then the constants α1 and α2 are equal to α1 = 1, α2 = 0

in (10), (11). The function G
(1)
0 (x, y; ξ, η) is a velocity potential due to a source submerged under infinitely

extended elastic plate with the properties of the plate Λ1:

G
(1)
0 = ln

r

r1
+ pv

∫ ∞

0

P (y, η; k)
cos k(x− ξ)

Z(k)
dk − iπP (y, η; q0)

cos q0(x− ξ)

Z ′(q0)
(13)

where pv indicates the principal-value integration, r2 = (x− ξ)2 + (y − η)2, r21 = (x− ξ)2 + (y + η)2,

P =
2

k(1 + e−2kH)
{(k(L1k

4 + 1)[(e−ky cosh kη − eky sinh kη)e−2kH + ek(y+η)] − 2K1e
−2kH sinh kη sinh ky}

Z(k) = K1 − k(1 + L1k
4) tanh kH, Z ′(q0) ≡ dZ/dk|k=q0

If the source is placed in region Γ2 (ξ > 0), then α1 = 0, α2 = 1 in (10), (11). The function G
(2)
0 (x, y; ξ, η) has

the form (13) with p0, L2, K2 in place of q0, L1, K1, respectively.
Unknown constants Rm, Tn to be determined to obtain the Green function completely. Because the hori-

zontal velocity and pressure are continuous across the boundary between the regions Γ1 and Γ2, the full solution
can be obtained from matching conditions

∂G1/∂x|x=0− = ∂G2/∂x|x=0+, G1|x=0− = G2|x=0+ (−H < y < 0) (14)

Truncating the infinite series in (10), (11), the constants Rm, Tn can be determined. The continuity conditions
(14) are fulfilled in an integral sense.

Using boundary condition (6) on the body surface S, we obtain the integral equation for the functions
σj(x, y)

πσj(x, y) −

∫

S

σj(ξ, η)
∂G

∂n
ds = nj

Once the distribution of the singularities σj(x, y) has been calculated, we can determine the radiation potentials
(9).

The far-field behavior of radiation potentials ϕj has the form

ϕj(x, y) ∼ C−
j e

iq0xψ0(y) (x→ −∞), ϕj(x, y) ∼ C+
j e

−ip0xf0(y) (x→ ∞)

where the coefficients C±
j are determined from (9) using the limiting values of Green functions at x− ξ → ±∞,

respectively.
The radiation load acting on the oscillating body is determined by the force F = (F1, F2) and the moment

F3 which, without account for the hydrostatic term, have the form

Fk =

3
∑

j=1

ζjτkj (k = 1, 2, 3), τkj = ρω2

∫

S

ϕjnkds = ω2µkj − iωλkj

where µkj and λkj are the added mass and damping coefficients, respectively. There is the symmetry condition
τkj = τjk. It is possible also to relate the damping coefficients to the far-field form of the radiation potentials

λkj = q0[2D1q
4
0 tanh2 q0H/ω + ρωQ(q0)]C

−
k C̄

−
j + p0[2D2p

4
0 tanh2 p0H/ω + ρωQ(p0)]C

+
k C̄

+
j

where the overbar denotes complex conjugate and

Q(z) =
1

cosh2 zH

∫ 0

−H

cosh2 z(y +H)dy =
1

2 cosh2 zH

(

H +
sinh 2zH

2z

)



4. Numerical results

The calculations are performed for the elliptic contour S : (x − c)2/a2 + (y + h)2/b2 = 1, where a and b are
the major and minor axes of the ellipse, respectively, and the coordinates of its center are equal to x = c, y =
−h (h > 0). Rotational oscillations occur with respect to the point x0 = 0, y0 = −h in (7). Input data
correspond to the ice sheets Λ1 and Λ2 with equal properties: Ei = 5GPa, ρi = 922.5kg/m3, di = 2m, νi =
0.3, (i = 1, 2); ρ = 1025kg/m3, b = 10m, a = h = 20m, H = 500m. Figures 2 and 3 give dimensionless values
of the diagonal coefficients of hydrodynamic load µ∗

jj = µjj/(πρb
2), λ∗jj = λjj/(πρωb

2) (j = 1, 2), µ∗
33 =

µ33/(πρb
4), λ∗33 = λ33/(πρωb

4) as functions of dimensionless frequency ω∗ = ω
√

b/g. Figures 2a,b,c and
3a,b,c give the hydrodynamic load for the cylinder submerged under the crack, (c = 0), whereas figures 2d,e,f
and 3d,e,f correspond to the position of the cylinder center in the distance c/b = 7 from the crack.

More detailed results for the hydrodynamic load on the cylinder and the amplitudes of the displacement of
the ice sheet will be presented at the Workshop.
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Fig.2 The added mass coefficients of a elliptic cylinder

Fig.3 The damping coefficients of a elliptic cylinder


