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Highlights: 

 An analytical solution for the transient potential flow field generated by a localised surface pressure disturbance 

in a weakly compressible ocean is provided. 

 Asymptotic expansions are obtained at large distance from the source. 

 Applications are envisaged in the field of early storm surge detection. 

 

1. Introduction 

At the last Workshop, Dai & Chen (2013) presented a study on the potential flow generated by an impulsive point source 

with surface tension. Stimulated by their approach, and motivated by the fact that water compressibility is usually 

neglected in the traditional potential flow theory, in this paper we investigate the effect of introducing slight density 

variations in the initial-value problem of water waves generated by a sudden impulsive pressure disturbance, acting on 

the free-surface of an ocean of constant depth. When water compressibility is considered, impulsive actions generate not 

only transient travelling surface waves, but also fast-moving pressure disturbances in the form of hydroacoustic waves. 

Because of their property of travelling much faster than the surface waves, such hydroacoustic signals could be exploited 

for the early detection of incoming free-surface disturbances, like for example storm surges. A similar technique has been 

suggested by Stiassnie (2010) for the early detection of tsunamis generated by an impulsive bottom displacement. 

However, to our knowledge, nothing as such has been envisaged before for the early detection of waves generated by 

impulsive pressure disturbances acting on the free surface. 

 

2. Mathematical Model 

Consider an ocean of constant depth   in two dimensions. Let   be the horizontal axis and   the vertical axis, positive 

upwards. Let     denote the unperturbed free surface of the ocean and      the seafloor;   is time. Assume an 

inviscid and slightly compressible fluid of density                      , with      . Following a strategy 

devised by Mei et al. (2005), we shall build the transient potential response          to the pressure disturbance 

                   acting on the free surface, by starting from the complex outgoing steady-state solution       : 
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Following Yamamoto (1982) and Ardhuin & Herbers (2013), the linearized governing equations for   in a slightly 

compressible fluid are as follows: 
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where   must be outgoing as | |   . In (2)   is the acceleration due to gravity,   is the speed of sound in water,    the 

(assumed constant) ambient density of the unperturbed fluid. Subscripts denote differentiation with respect to the relevant 

variable. Let us now apply the Fourier transform along   
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to the system (2), solve the straightforward ODE boundary-value problem obtained and then transform back into the 

original variables via the second of (3). These steps yield 
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where        √        , with  { }   . Expression (4) features an improper integral, since the integrand is 

singular at the poles      ,       and      ̃  which satisfy the dispersion relationships 
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respectively. First consider the case     and    . Integration of equation (4) is performed along the path of figure 1 

in the complex   domain. Note the particular indentation of the contour of figure 1 above the negative real poles and 

below the positive ones, which guarantees the solution to be outgoing at large distance     (see Mei, 1997).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Contour integration in the complex   plane for     and    . The crosses denote the poles of the integrand in (4). 

 

Note that the integration path we follow in figure 1 is different from that used by Yamamoto (1982) and later adopted by 

Stiassnie (2010) to obtain the steady-state hydroacoustic waves generated by a moving bottom. Application of the Green 

integral theorem and the Jordan lemma to (4) yields 
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where   is the last integer such that (6) is valid. A similar procedure is used in the remaining cases (    and    ; 

    and    ;     and    ) but is not reported here for the sake of brevity. In each case, particular care must be 

taken in choosing the only integration path which allows for outgoing solutions in the far field. Incidentally, in the limit 

    expression (8) strongly simplifies to 
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where the traditional dispersion relation             is fully recovered. Expression (9) represents the 

incompressible limit of (8) and is well known in the literature (see e.g. Stoker, 1957; Debnath, 1969).  

 

After having obtained the steady-state solution        (8) for all possible combinations of         and        , usage 

of (1) yields finally the sought expression for the Green function: 
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where       . The first term of (9) represents surface gravity waves propagating with wavenumber    along the   

axis. The second term represents the propagating hydroacoustic modes, while the last term represents the evanescent 

hydroacoustic modes, which are important only in the vicinity of     and decay exponentially from the origin. 

 

3. Approximated expressions 

Several approximated expressions can be worked out which simplify the complex numerical calculations required to 

evaluate equation (9). For the sake of brevity, here we shall only derive an approximated formula for the propagating 

hydroacoustic modes at large distance from the origin. Other useful approximated formulae will be presented at the 

Workshop. Following Chamberlain and Porter (1999), let us expand 
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and assume 

                 .      (11) 

Application of the method of stationary phase (see for example Mei et al., 2005) to the second term of (9), together with 

the approximation dictated by (10), yields the stationary points 
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where               Note that the stationary points (12) are the same obtained by Stiassnie (2010) for the 

hydroacoustic waves generated by a bottom displacement and exist only if         . With (12), the stationary phase 

approximation of the propagating hydroacoustic wave in (9) be shown to be 
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where   ̂  
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 )              Recall that (13) is valid under the initial assumption (11), which for each of 

the stationary points (12) now writes      ̂ 
    . After substitution of (12) in the latter expression, we find that the 

initial approximation (11) is valid if         . Since        m/s
2
 and        m/s, the inequality (11) used to 

obtain the stationary phase approximation (13) for the propagating hydroacoustic modes surely holds for a wide range of 

water depths.  

Let us now have a look at the physical picture given by (13). For an observer moving along the   axis at a constant speed 

   , expression (13) describes transient propagating waves which decay as  (     ). Note also that as     ,     , 



so that the hydroacoustic potential decays near the wave front. Figure 2 shows a snapshot of the first 2 hydroacoustic 

normal  modes            at large distance from the source, evaluated at the bottom of the ocean. Note that shorter 

hydro 

 

 

 

 

 

 

 

 

Figure 2. First two hydroacoustic modes at large distance from the source. Thin line:    , thick line:    . Parameters are: 

                             . 

hydroacoustic waves travel faster and are followed by a tail of increasingly longer waves. This is opposite to the 

dispersion mechanism of transient surface gravity waves, for which longer waves travel faster and are followed by a tail 

of shorter waves (see Mei et al., 2005; Chapter 2). Figure 2 also shows that the hydroacoustic modes have already 

travelled a very large distance since the onset of motion at    , which makes them particularly good candidates for the 

early detection of incoming surface perturbations generated on the free surface. A practical application of expression (13) 

to the case of a distributed surface pressure disturbance will be shown at the Workshop. 

The work of Emiliano Renzi is funded by the AXA Research Fund under the project “Underwater acoustic sensing for 

detection, early warning and increased risk awareness of storm surges with application to Ireland”. 
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