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So-called WIRs are elongated vertical tubes, hanging down from FLNGs, which serve the purpose
of pumping deep sea water, typically more than 150 m below the free surface. Partly due to the
pumping system inside, they are of variable internal cross section. The question then arises of possible
resonant vertical motion of the water column inside, under the vertical motion of the WIR, induced
by the heave, pitch and roll wave response of the FLNG.

We present here a simple analytical model to predict the vertical water motion inside the WIR,
and we compare the model predictions with simple experiments.

Analytical model

We take z = 0 as the mean free surface, and the z axis vertically upwards. The internal cross section
of the tube, S(z), is assumed to be slowly-varying so that the flow is quasi-vertical.

We assume small vertical motion Z(t) of the tube and we take η(t) as the vertical motion of the
internal free surface relative to the tube. So Z(t) + η(t) is the absolute vertical motion of the free
surface. Likewise w(z, t) is the vertical velocity of the water, averaged over the section, relative to the
tube, and Ż(t) + w(z, t) is the absolute velocity.

The Euler equation, in the vertical direction, writes

wt +wwz = −1

ρ
pz − g − Z̈ (1)

while, from mass conservation
w(z, t) S(z) = η̇ S(0) (2)

Neglecting the wwz term in equation (1), we get

η̈
S(0)

S(z)
= −1

ρ
pz − g − Z̈ (3)

Integrating in z, from the bottom of the pipe (in z = −h) to the free surface, we get

η̈

∫ η

−h

S(0)

S(z)
dz = −1

ρ
(0− ρ g h+ ρ g Z)− (g + Z̈) (h+ η) (4)

or, linearizing again:

η̈

∫

0

−h

S(0)

S(z)
dz + g η = −g Z − Z̈ h (5)

Here we have not accounted for added mass effects associated with the water exit and entrance at
the bottom of the pipe. Taking an added mass of 2 ρ b3, where b is the radius at the bottom, we see
that it is equivalent to increase the draft h of the tube by 2 b/π.

As a result the natural period of the piston mode is given by

T0 = 2π

√

[
∫

0

−h′

S(0)/S(z) dz

]

/g where h′ = h+
2 b

π
(6)



(e.g. see DNV-RP-205, 7.3.9.41)
From equation (5) we check that if the tube is of constant internal cross section S(z) ≡ S(0) then

η(t) = −Z(t) meaning that the free surface inside the tube does not move, as expected from an inviscid
flow model.

Experimental set-up

The experimental model is made of two concentric tubes, the interior one being shorter than the outer
one. The outer tube has an internal diameter 2b of 100 mm, with an immersed length h of 540 mm.
The inner tube has an outer diameter 2a of 70 mm and an immersed length d of 240 mm. It is sealed
at its bottom, which is made either flat, or rounded or conical. In the first series of experiments
reported here it is flat, meaning flow separation and viscous dissipation are taking place.

Figure 1: Experimental set-up: the dual tube system dipping in a cylindrical container below the
Hexapode (lefft) and optical detection of the free surface (right).

The two tubes are solidly linked together, and attached to the forced motion bench Hexapode of
Ecole Centrale Marseille. They are dipping in a cylindrical container, with a diameter of 440 mm (see
figure 1). In the experiments reported here the waterheight in the cylindrical container was set at
640 mm, meaning a 100 mm clearance from the base of the model to the bottom of the container.

Tests were performed under two types of forced excitation: harmonic and irregular. The vertical
motion of the free surface inside the tube is recorded with a video camera. Subsequent image pro-
cessing, under Matlab, yields the time series of the free surface elevation η(t) + Z(t). To improve the
detection of the free surface, the water inside the tube is dyed in green or blue (see figure 1).

Introducing damping effects

The fluid motion inside the tube is damped through two types of viscous effects: friction along the
vertical walls of the inner and outer tubes, and flow separation at the lower ends of the inner and
outer tubes.

Considering friction first, the thickness of the oscillatory boundary layer is expected to be of the
order of

√
ν T0, that is with ν = 10−6 m2/s and T0 = 1.3 s, roughly 1 mm, hence much smaller than

1Note that in this RP the vertical added mass for the circular cross section is different from what we have taken here
(8/3 ρ b3 vs 2 ρ b3) because in RP-205 the moonpool bottom is assumed to be surrounded by a solid horizontal plane
going to infinity.



the cylinder radii. As for assuming laminar boundary layer, with a maximum amplitude A of 0.1 m,
the oscillatory Reynolds number A2 ω0/ν is around 5 104, so the boundary layer should still be laminar
(Faltinsen, 1990). This means that the Stokes model of the oscillatory flat plate can be used to predict
the viscous dissipation.

According to the Stokes model, the friction stress that opposes the relative velocity w(z, t) of the
fluid with respect to the wall is

σ(z, t) = −ρ

√

ω ν

2
w(z, t) (7)

with ω the angular frequency.
In the upper part of the assembly the relative velocity is w = η̇ and the friction area is 2π (a+ b) d.

In the lower part the velocity is reduced to w = η̇ (b2 − a2)/b2 and the friction area is 2π b (h− d).

Accounting for this damping effect, equation (5) transforms into

[

d′ + (h′ − d′)
b2 − a2

b2

]

η̈ +

[

d

b− a
+

(h− d) (b2 − a2)

b3

] √
2 ν ω η̇ + g η = −g Z − h′ Z̈ (8)

still valid for an oscillation frequency ω.
The effects of flow separation at the lower ends of the tubes are collapsed into a single drag force

expressed as

Fd = −1

2
ρCD π a2 η̇ |η̇| (9)

meaning a term 1/2CD a2/(b2 − a2) η̇ |η̇| is added up to equation (8).

Here we focus on results from tests with imposed irregular motion. Stochastic linearization is
applied to the quadratic damping term, that is η̇ |η̇| is replaced with

√

8/π ση̇ η where ση̇ is the
standard deviation of η̇. For a given spectrum SZ(ω) of the forced motion, the RAO of η is obtained
from

{

−ω2
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b2

]

−i ω

[

(

d

b− a
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) √
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√

2
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+ g

}

RAOη = −g + h′ ω2

while

σ2

η̇ =

∫

∞

0

ω2 RAO2

η(ω) SZ(ω) dω

This is solved through iterations over the value of ση̇.

Comparisons between experimental and numerical RAOs

Imposed vertical motions with the Hexapode were generated from spectral density constant over the
frequency range from 0.5 Hz through 2 Hz.

Figure 2 shows the experimental and numerical RAOs obtained in the case of an irregular heave
motion with a standard deviation equal to 1 cm (meaning maximum excursions, roughly, close to
4 cm). The drag coefficient Cd was adjusted to get the best fit, which gave Cd = 0.85. Experimental
RAOs obtained under harmonic motion of 1 cm amplitude are also shown as symbols in the figures,
in close agreement with the two curves.

Finally figure 3 shows results analogous to figure 2 in the 2 cm standard deviation case. The best
fit is obtained with a drag coefficient of 0.65. These drag coefficients are consistent with literature
(e.g. see Thiagarajan & Troesch, 1993).
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Figure 2: Experimental and numerical RAOs in irregular motion tests with 1 cm standard deviation.
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Figure 3: Experimental and numerical RAOs in irregular motion tests with 2 cm standard deviation.
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