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Highlights: 
• A hypersingular integral-equation method is used to obtain the wave-exciting loads on and free-surface elevations around a 

bottom-mounted, arbitrarily shaped thin vertical cylinder. 
• The effects of an opening in the cylindrical shell are discussed. 
 

1. Introduction 

We present a method to solve for the wave-diffraction loads 
on thin or shell-like bottom-mounted vertical cylinders of 
arbitrary cross-sections in an inviscid wavy field.  Solutions 
for the flow about solid cylinders are well treated, e.g., [1][2]. 
However, the treatment is not as straight-forward when the 
cylinder is a thin shell and of arbitrary shape.  The 
conventional boundary-integral formulation will lead to a 
hypersingular integral equation, with more precaution in the 
evaluation of the kernel.  The hypersingular integral method 
was successfully employed in [3] for a flapping plate. The 
procedure used in that work and others (e.g. see [4][5]) is 
modified according to our recent work [6] to achieve a simpler 
form.  For demonstration, the method is used to solve for the 
wave field about an elliptical cylindrical shell with an 
opening. The effects of the opening location and its size on the 
diffraction pattern and forces are discussed. 
 
2. Problem Formulation 

Consider the dimensionless total potential : 
 

 (1) 

 

being harmonic in time with an angular frequency . Here, 
is the known incident-wave potential and is the unknown 

diffracted one. We use the normalization for 
all potentials in this work. The overbar denotes dimensional 
potentials,  is a characteristic length of the body,  the 

constant of gravity and  the incident-wave amplitude. 
Hereafter, all length variables and wave numbers are 
normalized using . The domain is considered laterally 
unbounded and the water depth is given by .  Consider a 
coordinate system on the calm-water free surface with the
axis pointing upwards (Fig. 1). The governing equations for 
the unknown are: 
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as well as a radiation condition in the farfield. Here 
is the field point and is the shell surface with a 

normal vector pointing out of the body. We then write: 
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where is an unknown potential in the horizontal plane and 

 is the wave number of the incident wave that satisfies the 
usual dispersion relation: . satisfies (3) 

and (4). can be also decomposed in the same manner: 
 

 
 
 

Fig. 1: The elliptical cylindrical shell considered and 
coordinate system 



  

  

Here, denotes the incident wave direction (Fig. 1). The 
governing equations for the unknown “modal potential” thus 
become: 
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Equations (8)-(9) will be solved using a boundary integral 
method by representing  as a normal dipole sheet (see [7]) 
and by applying (9).   Thus, 
 

 (10) 
 

 

The brackets symbolize the potential jump across the body 
while  represent collocation and integration 
points in the usual manner, respectively. The integration is 
taken over only one side of the body contour. The fundamental 
solution satisfies the radiation condition and is given by [8]: 
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with  being the Hankel function of the first kind and 

, where 
are the slope angles of the body curve (see Fig. 1).  Thus, 
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3. Numerical Treatment 

To solve the problem, the body shape is divided into flat 
panels where we assume a constant 
potential jump across each of these panels. We also introduce 
an integration parameter over each  so that  

 

(13) 
 

 

(14) 
 

Here is the panel length. The integration in (13) is standard 

except when  approaches . In that case, a Taylor 

expansion of the integrand around the point where the 
troublesome singularity occurs leads to 

 (15) 
 

 Equations (14), along with the fact that 

€ 

R = S t − ts were used 
in getting (15). Clearly, a hypersingular point of order 
exists. This equation can be integrated analytically between 
two points on a straight-line panel on B: 
 

 

(16) 
 

 
Here, we defined . 
After discretization of the contour and collocation, a system of 
equations is obtained and the solution is the potential jumps 
across the different panels. The source vector of the system is 
obtained from (9) after being applied at the collocation points 
of choice. The midpoints of the panels are chosen in this work. 
 
4. Wave Loads and Wave Field 

The loads on the body can be obtained by integrating the 
dynamic pressure over the surface. We define the excitation 
load in dimensionless form as

€ 

f j = F j ρη0gam . Here  is 
the fluid density and the exponent  is 2 for forces and 3 for 
moments. The loads are then given by: 
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In (17),  is the circumferential index of the straight-line 
elements.  The moments for j=4, 5 are taken about z and x 
axes, respectively, but over the ocean floor (y=-h). The last 
moment is about the y-axis. Note that the incident wave does 
not contribute to the loads on the body because of the zero 
thickness property. We are also interested in the free surface 
elevation which can be obtained from the integral equation  as: 
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The integrals in (19) can be handled by standard quadrature. 
 
5. Results and Discussions 

The procedure was verified by comparing the results for a 
closed circular cylinder to those in the literature [9]. In this 
paper, we will present just results for an elliptical cylinder 
with major and minor axes , respectively (Fig. 
1). 100 panels were found adequate to achieve a relative error 
less than 1%. We first present the free surface elevation results 
for total wave field over the elliptic shell in head and beam 
waves (Fig. 2 and 3). 
 

 
Fig. 2: Free-surface elevation around an elliptic shell with 
opening  for a wave incident at a direction 
and    
 
The results for the head wave (Fig. 2) indicate how the 
cylinder effectively shields the area downstream from the 
wave effects. Particularly of interest is the area inside the shell 
where no wave effects are observed at all. The beam wave 
results (Fig. 3) show an asymmetry in the shape of the field 
downstream of the body because of the presence of the 
opening. Effectively, a calm region spreads downstream from 
the edge of the shell. Higher waves are observed inside, 
though when compared to the previous case. 
 

 
Fig. 3: Free surface elevation around an elliptic shell with 
opening  for a wave incident at a direction 

 and  

Fig. 4: Force  due to a wave incident at  

 
Fig. 5: Force  due to a wave incident at  
 
Results for the loads on the body due to incident waves of 
different frequencies are plotted in (Figs. 4-7) against the 
wavenumber. The results in (Fig. 4) show that the forces on 
the body in the x-direction significantly increase at frequencies 



where the closed body attains its peak forces. This however 
decreases with the increased opening size. 

 
Fig. 6: Force due to a wave incident at  

 
Fig. 7: Pitching Moment  due to a wave incident at  

 
Fig. 8:  Yawing torque due to a wave incident at  
 
An increase in wave frequency of the incident wave leads to 
smaller forces on the open body to increase again at high 
frequencies. This can be attributed to the interaction of waves 
inside the body (the opening effect) being superposed over the 
body effect present when the body is closed. For beam 
incident waves, the force along the x-axis is nonzero when the 
body is opened (Fig. 5). In general, two peaks are observed in 
the figures for open bodies. The first peak is present for the 
closed body as well and can be attributed to the body shape 
and size. This peak is enhanced as the body is opened because 

of interference effects as already explained. The second peak 
emerges entirely because of the opening but is lower than the 
first peak. This peak is also observed at these frequencies for 
radiation forces when the body is made to move. It is therefore 
attributed to the resonance of the internal region of the shell. 
In general, the open body with the smallest opening is 
suffering the highest loads. Interestingly enough, the loads in 
the wave direction for beam waves decrease as the body is 
opened contrary to the results in head seas. The second peak is 
still observed though.  
The results for the moments are similar to those for the 
corresponding forces. We include one case in (Fig. 7) which 
shows the wave moment about an axis passing through the 
cylinder bottom and parallel to the z-axis. The similarity to the 
results in (Fig. 4) is obvious. This is to be expected as this 
moment results from forces in the x-direction applied about 
the prescribed axis. 
The final figure (Fig. 8) shows the torque on the body in a 
beam wave field. This torque is non-existent for head waves 
even when the body is opened because of symmetry. It only 
appears for an open body in beam waves. Three different 
peaks are observed for this load with spikier ones at higher 
frequencies, where this load seems to be more important. 
Forces in both the x and z directions contribute to this torque 
which might explain its more complex behavior.  
In the Workshop, new results [10] for the radiation problems 
will be presented as well. 
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