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This paper considers real time calculation of ship to ship interaction forces in a maritime simulator.
Maritime simulators are used for marine engineering and training of naval officers. In the simulator, it
is possible to navigate realistic ship models in realistic marine environments. The more accurate the
physical modeling of the environment, the higher the quality of the training and engineering. Motion of
ships are determined by the forces on the ships from the environment. The forces on ships comes from
interaction with other ships, fixed or floating structures, the seabed, wind, waves, viscous friction etc.

The main challenge is that all forces have to be calculated in real time, and that the calculations
of the solutions needs to be fast and scalable. This paper considers calculation of ship-ship interaction
forces based on an existing potential flow finite difference (FD) model for large-scale ocean wave modeling
[2]; extended to include a new weighted least squares (WLS) approximation body boundary condition
(BC) on the ship’s hull. The model is solved using an efficient multigrid preconditioned defect correction
solver (PDC) [1] and implemented in parallel on high-througput many-core graphical processing units
(GPU) using the CUDA API [3], [4]- The new WLS approximation of the body BC is similar to immersed
boundary methods (IBM) for elliptic equations [9], in particular the inhomogeneous Neumann IBM. This
development is a result of an ongoing effort to develop more accurate, efficient and flexible models of wave
forces on ships, and earlier developments have been presented at previous workshops and conferences [6],
[8], [7]- This ship-ship interaction model is developed in cooperation between the Technical University of
Denmark and FORCE Technology and is currently being integrated into the maritime simulator SimFlex4
at FORCE Technology.

The ship to ship interaction time depends on the speed difference between ships and the ship sizes
T = L/AU. If two ships meet head on, the interaction time is short and if a ship is overtaking another
the interaction time is longer. Simple calculations suggest that the force calculation frequency should be
in the range 0.1 to 10 Hz. Analysis relevant for determining feasibility of real time calculcations is given
in [3], [1].

Double Body Flow Model

The double body flow model is based on potential flow theory, i.e. the water is assumed to be incom-
pressible, inviscid and irrotational, and the fluid velocity is calculated from the scalar velocity potential
by u = V¢. The velocity potential satisfies mass conservation in the fluid volume 2 through the Laplace
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equation and the kinematic BC’s on the flat free surface, the sea bed and the on bodies in the fluid

V2¢ - 07 KAS [—h,O], (1)
oler B
E = O, z = O, (2)
n-Vo 0, z=—h, (3)
n-V¢ = n-up, x€ S5, (4)

where h is the sea depth, the still water level is at 2 = 0, n = (ny,ny,n,)? is the outward normal vector
to the fluid boundary, up is the body velocity and Sp is the body surface. The forces and moments
on the bodies are calculated from integration of the dynamic pressure over the body surfaces. The fluid
domain 2 is either unbounded in the horizontal direction and subject to far field BC’s or bounded by
walls with kinematic BC’s.

Numerical Solution

The solution for the velocity potential is found in the finite physical domain € = [0, L,] x [0, L,] x [—h, 0],
and the Laplace equation and the boundary condition are solved using a unit cube computational domain
Z = [0,1]3. The transformation between the computational domain and the physical domain is done
with algebraic grid stretching functions and transfinite interpolation, and the FD discretization of the
Laplace equation and outer boundary conditions are described in [2], [3] and [1].

The following describes the WLS approximation of the body BC (4) and the coupling with the FD
approximation of the Laplace equation (1). The Laplace equation is only solved on fluid points, i.e. the
points outside the bodies. To distinguish between points inside and outside the bodies, a sign function
is defined on the FD grid which is negative inside bodies and positive outside bodies

—bodyID if x € Qp,

where bodyID is a unique body index, and Qp is the domain inside the bodies. The points inside the
bodies which belong to a FD stencil of a point outside a body are marked as ghost points. The degrees
of freedom associated with ghost points are used to satisfy the body BC. The points on the ship hull
where the body BC are satisfied are the body points, and they are found from a normal projection of the
ghost points onto the ship hull. A stencil ; ;1 € S of fluid points is associated with each ghost point.
The WLS stencil points are found from a centered stencil around the body point, with stencil half width
Ag. Only points outside the body tangent plane through the body point are included in the stencil.
The body BC is approximated along the normal coordinate n = « - n, and the WLS coefficients for the
normal derivative % =mn- V¢ are found by Taylor expansions from the body point g to the points in
the WLS stencil
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where N is the basis change matrix which contains the body surface normal vector and two body surface
tangent vectors as basis vectors. The expansions are arranged in a linear system of equations Ad = f
where d is the vector containing the derivatives D*¢, and f is the vector containing the function values
at the stencil points. A weight is associated with each stencil point, and they are arranged in a diagonal
matrix W. The linear system is overdetermined, and the solution is found by weighted quadratic
minimization of the residual, resulting in a linear system of equations AT WAd = ATWT, and it has a
unique solution provided that the square matrix AT WA is non-singular. The coefficients for the normal
derivative are in the second row of the matrix [ATWA | “TATW.

Parallel GPU Implementation of the WLS Body BC

The GPU implementation of the FD part of the model is described in [2] and [3]. Unlike the FD method,
the WLS approximation is based on an unstructured point set. Hence it is not possible to immediately



utilize the data structure of the structured FD grid. Instead the following connectivity information is
needed for each ghost point: The index of the body point, the direction vector from the ghost point
to the body point, the stencil index list and a list with the WLS coefficients for the body BC. In the
current implementation, the WLS coefficients are calculated on the CPU and copied to the GPU where
they are stored in the global memory. The Laplace equation is solved on the GPU using a multigrid
preconditioned PDC solver in which the residuals are calculated using a matrix-free implementation of
the matrix-vector product between the FD Laplace operator and the solution vector. All the boundary
conditions are imposed on the solution prior to each multiplication with the FD Laplace operator. The
WLS approximation of the body BC is given by the inner product of the solution and the WLS coefficients
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The body BC’s are independent of each other, and the solution values at the ghost points can be updated
explicitly in independent CUDA kernels. A special Red-Black Z-line smoother is used where the one-
dimensional FD Laplace problem in the vertical direction is solved with Gauss-Seidel iteration instead of
a direct modified Thomas algorithm [3]. This is done to avoid the difficult implementation of a Thomas
algorithm for the WLS IBM.

Two Spheroids in a Rectangular Channel

Interaction between two spheroids in a channel with a rectangular cross section is considered as an
example application, similar to the example in [5]. Each spheroid has length L = 1.0 m, breadth
B = 0.2 m and draft D = 0.1 m. The channel has length L, = 4.0 m, width L, = 1.0 m and depth
h = 0.25 m. The first spheroid has a fixed position in the channel at ¢ = 2.0 m, yo = 1/3 m, measured
at the center of the spheroid. The second spheroid has an initial position at zop = 1.0 m, yg = 2/3 m
and a constant forward speed of U = 0.2 m/s. This corresponds to a depth-based Froude number of
Fry, = U/v/gh = 0.13 and length-based Froude number of Fry = U/+/gL = 0.06, hence the speed of the
moving spheroid is relatively low in both cases. The forces on the fixed spheroid are examined over the
time interval ¢ = [0 s, 10 s], that is the time it takes for the moving spheroid to pass the fixed spheroid.
The FD and WLS approximations are both of second order. The tolerance on the relative residual in
the PDC solver is rtol = 10~4. The channel with the spheroids in their initial position and an example
of the calculated velocity potential are seen in Figure 1. The computational performance for execution
on the GTX 680 GPU with 1536 cores and 2048 MB RAM and the calculated forces are seen in Figure
2. Note that the GPU implementation is not yet optimized, and the setup of the sgn function and the
WLS BC are still done sequentially on the CPU.

Figure 1: Left: Initial configuration of the two spheroids in a rectangular channel. The size of the FD
grid is 257 x 65 x 17. Right: The corresponding velocity potential at the surface at ¢ = 0. The black
dots mark the ghost point associated with the body BCs.
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Figure 2: Left the absolute computation time per time step for grid sizes of 257 x 65 x 17, 385 x 97 x 25,
513 x 129 x 33, 769 x 193 x 49, 1025 x 257 x 65 and 1537 x 257 x 97. The —— line shows O(N) scaling,
and the — - — line shows linear scaling with the number of ghost points. Right: Surge, sway and yaw on
the fixed spheroid for the same problem sizes as on the left figure.

Conclusion

A new WLS IBM for the inhomogeneous Neumann body BC has been presented. The WLS IBM is
combined with the FD approximation of Laplace equation for the velocity potential. This combination
enables calculation of flow around complex geometries like a ship hull without the trouble of complicated
grid generation. An example application with interaction between two spheroids in a channel demon-
strates the potential of the new WLS IBM. The efficient multigrid preconditioned PDC solver and the
parallel GPU implementation makes it possible to solve the double body flow problem within the range
of real-time application. Significant performance gains are still to be expected from algorithmic tuning,
implementation optimization and better hardware.
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