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A two-dimensional problem of a symmetric rigid body with small deadrise angle, which is lifted
from the liquid surface with a prescribed acceleration, is considered. The liquid is of infinite
depth, inviscid and incompressible. Initially the liquid is at rest. The free surface of the liquid
is flat and horizontal. Initial draft of the body is given. The body starts to move suddenly
upwards from the liquid with a prescribed acceleration which varies in time. Gravity and sur-
face tension effects are not included in the model. Boundary conditions on the liquid surface
are linearized and imposed on the equilibrium position of the liquid surface. The hydrodynamic
pressure is assumed continuous at the periphery of the wetted area which shrinks monotonically
with time. The unknown size of the wetted area is determined by the condition that the speed
of the contact points is proportional to the local velocity of the flow. Hydrodynamic forces
acting on a lifting body are determined within the proposed linearized model and compared
with the numerical results obtained by solving the Navier-Stokes equations. It is shown that the
linearized water-exit model accurately predicts the hydrodynamic loads.

1. Introduction

The present study is motivated by naval hydrodynamics, where a section of the ship enters the
water and exits from water thereafter, and aircraft ditching on the water surface within the
‘2D + t’ approach. The first stage, which is referred to as the entry or impact stage, is well
studied. However, the second stage, when the section exits from the water, has not yet been
fully studied. It was shown (see Piro & Maki (2011, 2012, 2013) and Tassin et al. (2013))
that the negative hydrodynamic loads during the second stage can be as large in magnitude as
the impact loads acting on the section during the impact stage. The physical processes that
are important during the exit stage are different from those which dominant the impact stage
(Greenhow, 1988). For many cases it is expected that viscous effects and even surface tension
can play a significant role. A linearized model of exit was suggested by Korobkin (2013) and
applied successfully to the problems of exit with constant acceleration. In this model, the flow
is assumed potential and linear. The shape of the wetted part of the body is simplified by using
the so-called “flat-plate approximation”. Only inertia forces are included in the exit model of
this paper.



Figure 1. Initial configuration of the exit problem.

The present model is concerned with the negative hydrodynamic force acting on a body lifted
from the liquid surface during the early stage (Figure 1). Viscous effects are taken into account
through the equation for the velocity of the contact points, which is taken to be proportional to
the local speed of the flow at these points.

2. Mathematical formulation of the exit model

Within the present exit model, the pressure p(x, y, t) is given by the linearized Bernoulli equation
p(x, y, t) = −ρϕt(x, y, t), where the velocity potential ϕ(x, y, t) satisfies the Laplace equation in
the lower half plane y < 0 and decays at infinity, where x2 + y2 →∞. The boundary conditions
are

ϕt(x, 0, t) = 0 (y = 0, |x| > c(t)), ϕy(x, 0, t) = h′(t) (y = 0, |x| < c(t)),

where the function c(t) is calculated by using the condition

dc

dt
= γϕx(c(t), 0, t). (1)

The coefficient γ is undetermined in the present model and is chosen by using the numerical
results by Piro & Maki (2011). It was found that γ = 2 corresponds to all available numerical
results. We assume that the relation between the speed of the contact point c′(t) and the local
tangential velocity of the flow is linear with the coefficient γ being dependent, in general, on the
physical characteristics of both the liquid and the body surface, such as wettability of the body
surface and viscosity of the liquid.
The solution of the mixed boundary problem with respect to the pressure provides

p(x, 0, t) = −ρh′′(t)
√
c2(t)− x2 (|x| < c(t)), F (t) =

c(t)∫
−c(t)

p(x, 0, t)dx = −mah
′′(t), (2)

where ma = 0.5πρc2(t) is the added mass of the equivalent flat plate. It is seen that the
hydrodynamic force can be calculated if the size of the wetted area, which is described by the
function c(t), is known.
The velocity potential and the velocity of the flow along the body surface are given by

ϕ(x, 0, t) =

t∫
0

h′′(τ)
√
c2(τ)− x2dτ ϕx(x, 0, t) = −x

t∫
0

h′′(τ)dτ√
c2(τ)− x2

. (3)

Equations (1) and (3) yield the following equation for the function c(t)

dc

dt
= −γc(t)

t∫
0

h′′(τ)dτ√
c2(τ)− c2(t)

. (4)



To solve equation (4), we introduce new non-dimensional variables α and σ such that c2(t) =
c20(1−σ), c2(τ) = c20(1−α), where α and σ are equal to zero when t = 0 and τ = 0, correspond-
ingly, and α = σ at τ = t. A new unknown function f(σ) is introduced by the equation

h′′(t) = f(σ)
dc2

dt
.

The equation (4) leads to two equations with respect to f(σ) and t(σ)

h′(t) = −c20

σ∫
0

f(α)dα, h′′(t) = 2γc30(1− σ)f(σ)

σ∫
0

f(α)dα√
σ − α

. (5)

Initial asymptotic behaviour of the solution to (5) determines the integration scheme. If h(t) ∼
Atm as t→ 0, then f(σ) = −q0σ−kG(σ), where G(0) = 1 and k = (3−m)/(2m). The formula
for q0 is not shown here. We introduce two non-dimensional functions V (t) = h′(t)/(c20q0) and
W (t) = h′′(t)/(2γc30q

2
0). These functions are given.

3. Numerical solution and its comparison with the CFD results

The interval 0 < σ < 1 is divided into N subintervals with σn = n/(N + 1) and new unknowns
Gn = G(σn) and tn = t(σn). The function G(σ) is interpolated linearly in each subinterval. The
system provides

Gn = (V (tn)− V (tn−1) +Gn−1βn)/αn, W (tn) = 2(1− σn)σ1/2−2kn Gn(GnAnn + Pn), (6)

where βn, αn and Ann are given coefficients, and Pn depends on Gj , 1 ≤ j ≤ n− 1. The system
(6) is solved by the bisection method with respect to the time instants tn.

Figure 2. The dimensional force in N/m acting on a half of the body as a function of time in
seconds for (a) b = +1 m/s−3 and (b) b = −1 m/s−3.

Figure 3. CFD prediction of free-surface location at time 0.3 s for case shown in Figure 2a.

The problem of water exit is also solved numerically with a VOF-based Navier-Stokes solver
from the OpenFOAM library. Computations are performed for the parabolic contour y =
x2/(2R)−h0+h(t), where R ≈ 1.4 m, h0 = 1 cm and h′′(t) = a+2bt, a = 1 m/s−2, b = ±1 m/s−3.
Here c0 =

√
2Rh0. Gravity is not included in the computations. The results for the vertical

force on the body are presented in Figure 2. It is seen that the theoretical model well describes



the evolution of the hydrodynamic force. However, the model does not describe all details of the
force just after the start of the body motion, and the interaction lasts longer in CFD than in the
theory for b = +1 m/s−3. The behavior for large time in the this case is due to the nonlinear
free-surface which is still attached to the body (Figure 3).

Figure 4. The dimensional force in N/m acting on a half of the parabolic contour lifted from
water with linear acceleration, h(t) = at3, where a = 1 m/s−3.

If the body acceleration linear function of time, h(t) = at3, then the system (5) can be written
in the form independent of any parameters

τ2 = 4

σ∫
0

g(α)dα, τ = (1− σ)g(σ)

σ∫
0

g(α)dα√
σ − α

, (7)

where t = τ(c0/48γa)
1
3 and the force F (t) = Fscτ(σ)(σ − 1), Fsc = 0.25πρ(36a2c70/γ)

1
3 . The

computations were performed for the same shape as in Figures 2 and 3. The system (7) is solved
by the power series method. The results are shown in Figure 4a. It was found that the difference
between the CFD and theoretical solutions can be approximated as 5.5t (see Figure 4b). This
implies that the added mass in the CFD results differs from the theoretical one by a constant.
One could expect that this constant describes the effect of the liquid left on the lifting surface.
The latter effect is not taken into account in the theoretical model.
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