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1. Introduction 

In this study numerical and experimental results concerning the mean drift loads exerted on an array of free floating 
OWC’s devices are presented. The work is a follow up of the corresponding work presented in the last year Workshop 
(see [1]) by accounting now for devices that consist of free floating concentric cylinders which are exposed to the action 
of regular plane waves propagating in finite depth waters.  The numerical results have been obtained using both the 
method of direct integration of the hydrodynamic pressure on the instantaneous wetted surface of the body (see [2], [3]), 
as well as the momentum conservation principle (see [4], [5], [6], [7]) within properly defined fluid control volumes that 
surround each OWC device in the array. The required first–order velocity potentials around each body of the multi–body 
configuration have been obtained analytically by solving the corresponding diffraction, motion– and pressure–
dependent–radiation problems for the hydrodynamically interacting OWC’s. The hydrodynamic interaction effects are 
evaluated using the single OWC’s hydrodynamic characteristics and the physical idea of multiple scattering (see [8], [9]). 
The numerical predictions are compared between each other; whereas for some configurations they are supplemented by 
experimental results obtained during an experimental campaign conducted in CEHIPAR research institution (see [10]). 

2.  Methodology   

We consider a group of N vertical axisymmetric OWC devices, either floating independently or as a unit.The geometric 
configuration of each device consists of an exterior partially immersed toroidal oscillating chamber of finite volume 
supplemented by a concentric interior piston– like truncated cylinder (Figs. 1, 2). Small amplitude, inviscid, 
incompressible and irrotational flow is assumed, so that linear potential theory can be employed. A number of N local 

cylindrical co–ordinate systems  , ,q q qr z , are defined with origins on the sea bottom and their vertical axes pointing 

upwards and coinciding with the vertical axis of symmetry of the q device.  

 
Fig.1 Schematic representation of an array of OWC devices 

consisting of a concentric truncated cylinder placed in a 
row 

 
Fig. 2 Group of N identical OWC devices connected as a unit, 

forming a platform 

The fluid flow around the q=1,2,…,N device expressed in its own co-ordinate system can be described by the 

potential function:     ti
qq

q
qq

q ezrtzr   ,,Re;,, , which can be decomposed into three terms; the diffraction 

potential, (includes incident and scattered components); the motion–radiation potential, , induced around the 

device q due to the forced oscillation of the device p in the jth direction with unit velocity amplitude, 

q
D

qp
j

 tip
j

p
j exx  0Re  , 

and the pressure–radiation potential, , around the device q due to unit time harmonic oscillating pressure 

head,

qp
p

 tie 

N

p
in

p
in pP 0 Re , in the chamber for the p device, i.e.  

  (1)       
 


N

p

qq
qp
p

p
inqq

qp
j

p j

p
jqq

q
Dqq

q zrpzrxzrzr
1

0
1

6

1
0 ,,,,,,,,   

mailto:mavrakos@naval.ntua.gr
mailto:dconispoliatis@yahoo.gr


Abstract for the 29th Intl Workshop on Water Waves and Floating Bodies, Osaka (Japan), March 30 – April 02, 2014 

These potentials  (l ≡ q,  qp ; k=D,1…,6, P; p=1, 2,…, N) are solutions of Laplace’s equation in the entire fluid 

domain and satisfy the zero normal velocity on the sea bed 

l
k

 0z ; the kinematic conditions on the q mean body’s 

wetted surface and the boundary conditions at the outer and inner free sea surface of the q–th device :    dz 
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The symbols that are used above are defined at Figure 1. The method for evaluating the fluid flow around the q device in 
the array relies on single device hydrodynamic characteristics and accounts for the hydrodynamic interactions among the 
devices using the physical idea of multiple scattering. Matched axisymmetric eigenfunction expansions in properly 
defined coaxial ring–shaped fluid regions around each body (see Fig. 1) have been used for evaluating the required 
single body hydrodynamic characteristics. In each fluid region appropriate series representations of the velocity 
potentials can be established, which must be continuous along with their first derivatives at the interfaces of neighboring 
fluid domains. 

By the way of example, the wave field around the body q of the arrangement expressed in q–th device co–ordinate 
system is given by:   
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For the inner fluid domain, in the q device’s chamber, denoted by M (see. Fig. 1) the function  is given by: l
mk ,
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In Equation (4), , are the unknown Fourier coefficients for the velocity potential representation in the M 

field of the q device, the latter being considered open to the atmosphere and restrained and 

. The term is equal to: 
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Here:             (6) 
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where Im, Km, denotes the m–th order modified Bessel function of first and second kind, respectively. In Equation (5), 

,  are the unknown Fourier coefficients for the device q in isolation condition.  q
jmkF ,,

q
jmkF *

,,

3.  Drift forces   

By making use of the near–field method presented by Pinkster and Van Oortmerssen [2], the time–mean drift force and 
moment, acting on the device q of the array, can be obtained as: 
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  (8) 

Here the bars denote the time average; is the mean q device’s wetted surface; ρ is the water density; g is the gravity 

acceleration; is the unit normal vector pointing outwards to the device; M is the generalized mass matrix;

,0
qS

n qX is the 
vector of the first–order translations at a point on the device’s wetted surface, which can be displaced as superposition of 
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translation motions of the bodies’ center of gravity and the rotations around it. The term ,
q

gX is the first–order 

translational accelerations of body’s center of gravity and is the first–order relative wave elevation with respect to the 

transposed static water line WL on the q device. In Eq. (8), generalized normal vector components and mass moments of 
inertia have to be considered for evaluating the mean drift moments.  

,q
r

Following the momentum conservation principle, the expressions for both horizontal and vertical mean drift forces 
and the corresponding moments are given by (Mavrakos, [11]): 
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Here, time averages over r.h.s of the above equations are understood, k, i and j are the unit vectors in z–, x– and y–axes 
respectively, n is the unit normal vector oriented outwards from the fluid control volume, x is the position vector of a 
point on the control surfaces with respect to the coordinate system of the examined device and the assumption was made 
that the sea bottom is horizontal. Moreover, SB is the sea bottom, SFS the portion of the free surface enclosed between 

and the fixed vertical cylindrical control surface S0 ,qS R surrounding each OWC of the array, which in the present 

contribution it is assumed to coincide in the radial direction with the mean wetted surface of each device. The complete 
representation of the velocity potential around the OWC has to be taken into account by including both wave-like and 
evanescent wave modes (Mavrakos, [11]). Drift loads on the individual devices are properly superimposed with respect 
to a global co-ordinate system in order to evaluate the drift loads on the entire multi-body configuration considered as a 
unit.  

3. Numerical results 

In the present contribution results are plotted for three different configurations of OWC devices. In the first configuration 
we examined an array of three same OWC devices placed in a row, restrained in the wave impact. The devices are placed 
on the x axis of a Cartesian co–ordinate system and the wave angle with the y axis is 0θ  . The radius and the draught 
of the concentric cylindrical body are 0.4m; the radius and the draught of the oscillation chamber are 0.5m and the 
chamber’s thickness is 0.1m (Figures 3,4). The water depth is equal to 5m and the distance between the vertical axis of 

 

Fig. 3 Physical model of three OWC devices open to the 
atmosphere placed in a row 

 

Fig. 4 Schematic representation of three OWC devices placed 
in a row 

each device of the array is 2m. The turbine parameter is either assumed, 0 , so the inner pressure in each device is 
equal to the atmospheric one (see [12]); or equal to an optimum coefficient of the same restrained OWC device but in 
isolation as in Evans and Porter [13] work. In the second configuration the above array of OWC devices is floating 
individually, and in the third configuration as a unit forming a platform. The mass and mass moment of inertia of each 

device were assumed equal to , respectively; the mass and mass moment of inertia of the multi – 

device array were assumed equal to,  respectively. 
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Fig. 5  Total horizontal drift force, on y axis, acting on the 

tail–end restrained devices of the array versus wave 
period.  
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Fig. 6  Total horizontal drift force, on x axis, acting on the 

tail–end restrained devices of the array versus wave 
period.   
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Fig. 7  Total horizontal drift force, on y axis, acting on the 

middle device of the floating individual array versus 
wave period.  
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Fig. 8  Total horizontal drift force, on y axis, acting on the 

entire multi–device array system versus wave period.  
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