Mean Drift Loads on Arrays of Free Floating OWC Devices Consisting of Concentric Cylinders

by Dimitrios N. Konispoliatis and Spyros A. Mavrakos*
National Technical University of Athens, School of Naval Architecture and Marine Engineering
9 Heroon Polytechniou Ave, GR 157-73, Athens, Greece
E-mail: mavrakos@naval.ntua.gr ; dconispoliatis@yahoo.gr

1. Introduction
In this study numerical and experimental results concerning the mean drift loads exerted on an array of free floating OWC’s devices are presented. The work is a follow up of the corresponding work presented in the last year Workshop (see [1]) by accounting now for devices that consist of free floating concentric cylinders which are exposed to the action of regular plane waves propagating in finite depth waters. The numerical results have been obtained using both the method of direct integration of the hydrodynamic pressure on the instantaneous wetted surface of the body (see [2], [3]), as well as the momentum conservation principle (see [4], [5], [6], [7]) within properly defined fluid control volumes that surround each OWC device in the array. The required first–order velocity potentials around each body of the multi–body configuration have been obtained analytically by solving the corresponding diffraction, motion– and pressure–dependent–radiation problems for the hydrodynamically interacting OWC’s. The hydrodynamic interaction effects are evaluated using the single OWC’s hydrodynamic characteristics and the physical idea of multiple scattering (see [8], [9]). The numerical predictions are compared between each other; whereas for some configurations they are supplemented by experimental results obtained during an experimental campaign conducted in CEHIPAR research institution (see [10]).

2. Methodology
We consider a group of \(N \) vertical axisymmetric OWC devices, either floating independently or as a unit. The geometric configuration of each device consists of an exterior partially immersed toroidal oscillating chamber of finite volume supplemented by a concentric interior piston– like truncated cylinder (Figs. 1, 2). Small amplitude, inviscid, incompressible and irrotational flow is assumed, so that linear potential theory can be employed. A number of \(N \) local cylindrical co–ordinate systems \((r_q, \theta_q, z_q)\), are defined with origins on the sea bottom and their vertical axes pointing upwards and coinciding with the vertical axis of symmetry of the \(q \) device.

![Fig.1 Schematic representation of an array of OWC devices consisting of a concentric truncated cylinder placed in a row](image1)

![Fig.2 Group of N identical OWC devices connected as a unit, forming a platform](image2)

The fluid flow around the \(q=1,2,\ldots,N \) device expressed in its own co–ordinate system can be described by the potential function:
\[
\phi^q(r_q, \theta_q, z_q) = \Re \left\{ \phi_D^q(r_q, \theta_q, z_q) e^{-i\omega t} \right\}
\]
which can be decomposed into three terms; the diffraction potential, \(\phi_D^q \) (includes incident and scattered components); the motion–radiation potential, \(\phi_{motion}^q \), induced around the device \(q \) due to the forced oscillation of the device \(p \) in the \(j \)th direction with unit velocity amplitude, \(x_j^p = \Re \{ \beta_{in}^p e^{-i\omega t} \} \), and the pressure–radiation potential, \(\phi_{pressure}^q \), around the device \(q \) due to unit time harmonic oscillating pressure head, \(P_{in}^p = \Re \{ \rho_{in0}^p e^{-i\omega t} \} \), in the chamber for the \(p \) device, i.e.
\[
\phi^q(r_q, \theta_q, z_q) = \phi_D^q(r_q, \theta_q, z_q) + \sum_{p=1}^{N} \sum_{j=1}^{4} x_j^p \phi_{motion}^q(r_q, \theta_q, z_q) + \sum_{p=1}^{N} \rho_{in0}^p \phi_{pressure}^q(r_q, \theta_q, z_q)
\] (1)
These potentials \(\phi^q_i \) \((l = q, qp; k = D, 1, \ldots , 6; P; p = 1, 2, \ldots , N)\) are solutions of Laplace’s equation in the entire fluid domain and satisfy the zero normal velocity on the sea bed \((z = 0)\); the kinematic conditions on the \(q \) mean body’s wetted surface and the boundary conditions at the outer and inner free sea surface of the \(q \)-th device \((z = d)\):
\[
a^2 \phi^q_i - \gamma \frac{\partial^2 \phi^q_i}{\partial z^2} = \left\{ \begin{array}{ll}
0 & \text{for } r_g \leq a_q; \quad l = q, k = D; \quad \text{or} \quad l = qp, k = 1, 2, \ldots , 6, P; \\
-\varepsilon_{q,s} \rho = 0 & \text{for } r_h < r_g \leq b_q; \quad l = q, k = D; \quad \text{or} \quad l = qp, k = 1, 2, \ldots , 6; \\
& \text{for } r_h \leq r_g \leq b_q; \quad l = q; \quad \text{or} \quad l = qp, k = P.
\end{array} \right.
\]
\(\varepsilon_{q,s} \rho\)

The symbols that are used above are defined in Figure 1. The method for evaluating the fluid flow around the device, the latter being considered open to the atmosphere and restrained and restrained and the array relies on single device hydrodynamic characteristics and accounts for the hydrodynamic interactions among the devices using the physical idea of multiple scattering. Matched axisymmetric eigenfunction expansions in properly defined coaxial ring–shaped fluid regions around each body (see Fig. 1) have been used for evaluating the required single body hydrodynamic characteristics. In each fluid region appropriate series representations of the velocity potentials can be established, which must be continuous along with their first derivatives at the interfaces of neighboring fluid domains.

By the way of example, the wave field around the body \(q \) of the arrangement expressed in \(q \)-th device co–ordinate system is given by:
\[
\phi^q_i(r_q , \theta_q , z) = \left\{ \begin{array}{ll}
-\varepsilon_{q,s} \rho = e^{i m \theta_q} ; & \text{for } k = D; \quad l = q \\
& e^{i m \theta_q} ; & \text{for } k = j; \quad l = qp \\
& \frac{1}{\varepsilon_{q,s} \rho} \sum_{m=-\infty}^{\infty} \Psi^q_{k,m}(r_g, z) e^{i m \theta_q} ; & \text{for } k = p; \quad l = qp
\end{array} \right.
\]

For the inner fluid domain, in the \(q \) device’s chamber, denoted by \(M \) (see. Fig. 1) the function \(\Psi^q_{k,m} \) is given by:
\[
\frac{1}{\delta_k} \Psi^q_{k,m}(r_g, z) = \delta_{k,p} \frac{1}{\delta_k} \Psi^q_{k,m}(r_g, z) + \sum_{l=0}^{\infty} \left(F_{k,m,j}^q M(r_g) + F_{k,m,j}^q M^* (r_g) \right) Z_j(z)
\]
In Equation (4), \(F_{k,m,j}^q \), \(F_{k,m,j}^q \), are the unknown Fourier coefficients for the velocity potential representation in the \(M \) field of the \(q \) device, the latter being considered open to the atmosphere and restrained and restrained and the array relies on single device hydrodynamic characteristics and accounts for the hydrodynamic interactions among the devices using the physical idea of multiple scattering. Matched axisymmetric eigenfunction expansions in properly defined coaxial ring–shaped fluid regions around each body (see Fig. 1) have been used for evaluating the required single body hydrodynamic characteristics. In each fluid region appropriate series representations of the velocity potentials can be established, which must be continuous along with their first derivatives at the interfaces of neighboring fluid domains.

By the way of example, the wave field around the body \(q \) of the arrangement expressed in \(q \)-th device co–ordinate system is given by:
\[
\phi^q_i(r_q , \theta_q , z) = \left\{ \begin{array}{ll}
-\varepsilon_{q,s} \rho = e^{i m \theta_q} ; & \text{for } k = D; \quad l = q \\
& e^{i m \theta_q} ; & \text{for } k = j; \quad l = qp \\
& \frac{1}{\varepsilon_{q,s} \rho} \sum_{m=-\infty}^{\infty} \Psi^q_{k,m}(r_g, z) e^{i m \theta_q} ; & \text{for } k = p; \quad l = qp
\end{array} \right.
\]

For the inner fluid domain, in the \(q \) device’s chamber, denoted by \(M \) (see. Fig. 1) the function \(\Psi^q_{k,m} \) is given by:
\[
\frac{1}{\delta_k} \Psi^q_{k,m}(r_g, z) = \delta_{k,p} \frac{1}{\delta_k} \Psi^q_{k,m}(r_g, z) + \sum_{l=0}^{\infty} \left(F_{k,m,j}^q M(r_g) + F_{k,m,j}^q M^* (r_g) \right) Z_j(z)
\]
In Equation (4), \(F_{k,m,j}^q \), \(F_{k,m,j}^q \), are the unknown Fourier coefficients for the velocity potential representation in the \(M \) field of the \(q \) device, the latter being considered open to the atmosphere and restrained and restrained and the array relies on single device hydrodynamic characteristics and accounts for the hydrodynamic interactions among the devices using the physical idea of multiple scattering. Matched axisymmetric eigenfunction expansions in properly defined coaxial ring–shaped fluid regions around each body (see Fig. 1) have been used for evaluating the required single body hydrodynamic characteristics. In each fluid region appropriate series representations of the velocity potentials can be established, which must be continuous along with their first derivatives at the interfaces of neighboring fluid domains.

3. Drift forces

By making use of the near–field method presented by Pinkster and Van Oortmerssen [2], the time–mean drift force and moment, acting on the device of the array, can be obtained as:
\[
F^{(2)q} = \int_{S_{q}} \frac{1}{2} \rho \cdot \mathbf{g} \cdot \left(\mathbf{e}_{T} \right)^{2} \; ndl + M \cdot \mathbf{R} \cdot X_{q} \; + \; \frac{1}{2} \; \mathbf{\rho} \cdot \mathbf{\nabla} \Phi_{q} \; \mathbf{\nabla} \Phi_{q} \; ndS + \mathbf{\rho} \cdot \mathbf{X} \; \cdot \mathbf{\nabla} \Phi_{q} \; ndS
\]
Here the bars denote the time average; \(S_{q} \), is the mean \(q \) device’s wetted surface; \(\rho \) is the water density; \(g \) is the gravity acceleration; \(\mathbf{n} \) is the unit normal vector pointing outwards to the device; \(M \) is the generalized mass matrix; \(X_{q} \) is the vector of the first–order translations at a point on the device’s wetted surface, which can be displaced as superposition of
translation motions of the bodies’ center of gravity and the rotations around it. The term \ddot{X}_g^q, is the first-order translational accelerations of body’s center of gravity and ζ_q^g, is the first-order relative wave elevation with respect to the transposed static water line WL on the q device. In Eq. (8), generalized normal vector components and mass moments of inertia have to be considered for evaluating the mean drift moments.

Following the momentum conservation principle, the expressions for both horizontal and vertical mean drift forces and the corresponding moments are given by (Mavrakos,[11]):

$$F^{(2)q} = \rho \int \left[\Phi_q^g + \frac{1}{2} \nabla \Phi_q^g \cdot \nabla \Phi_q^g + g_r \right] n - \frac{\partial \Phi_q^g}{\partial t} \nabla \Phi_q^g \left(x \times n \right) - \left(x \times \Phi_q^g \right) \frac{\partial \Phi_q^g}{\partial t} \left(x \times \nabla \Phi_q^g \right) dS - k \int \left[\Phi_q^g + \frac{1}{2} \nabla \Phi_q^g \cdot \nabla \Phi_q^g \right] dS - k_m \int n_z dS \quad (9)$$

Here, time averages over r.h.s of the above equations are understood, k, i, and j are the unit vectors in z-, x- and y-axes respectively, n is the unit normal vector oriented outwards from the fluid control volume, x is the position vector of a point on the control surfaces with respect to the coordinate system of the examined device and the assumption was made that the sea bottom is horizontal. Moreover, S_B is the sea bottom, S_F the portion of the free surface enclosed between S_R surrounding each OWC of the array, which in the present contribution it is assumed to coincide in the radial direction with the mean wetted surface of each device. The complete representation of the velocity potential around the OWC has to be taken into account by including both wave-like and evanescent wave modes (Mavrakos,[11]). Drift loads on the individual devices are properly superimposed with respect to a global co-ordinate system in order to evaluate the drift loads on the entire multi-body configuration considered as a unit.

3. Numerical results

In the present contribution results are plotted for three different configurations of OWC devices. In the first configuration we examined an array of three same OWC devices placed in a row, restrained in the wave impact. The devices are placed on the x axis of a Cartesian co-ordinate system and the wave angle with the y axis is $\theta = 0$. The radius and the draught of the concentric cylindrical body are 0.4m; the radius and the draught of the oscillation chamber are 0.5m and the chamber’s thickness is 0.1m (Figures 3,4). The water depth is equal to 5m and the distance between the vertical axis of each device of the array is 2m. The turbine parameter is either assumed, $A >> 0$, so the inner pressure in each device is equal to the atmospheric one (see [12]); or equal to an optimum coefficient of the same restrained OWC device but in isolation as in Evans and Porter [13] work. In the second configuration the above array of OWC devices is floating individually, and in the third configuration as a unit forming a platform. The mass and mass moment of inertia of each device were assumed equal to 0.383tn, 0.062tn.m², respectively; the mass and mass moment of inertia of the multi-device array were assumed equal to, 1.149tn, 0.186tn.m² respectively.

4. Acknowledgements

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.
Abstract for the 29th Intl Workshop on Water Waves and Floating Bodies, Osaka (Japan), March 30 – April 02, 2014

5. References

