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1. Introduction

Violent Fluid-Structure Interaction (FSI) is one of the mokallenging problems in computational engineering. Qe t
its extreme nonlinearity (e.g. wave breaking, splittingrging and air-entrainment), most of the traditionally reuival
approaches based on the potential theory are invalid. ThepGtational Fluid Dynamics (CFD) method is a promising
tool to analyze these extremely-nonlinear FSI problemse TH (Constrained Interpolation Profile) method [5] is a
powerful CFD method for FSI analysis. Hu and Kashiwagi [h8&}e developed a stationary Cartesian-grid CIP code for
extremely-nonlinear FSI.

Recently, an adaptive Cartesian-grid CIP method is prapbgeHe [1] to save CPU-time and capture the bound-
aries/interfaces accurately. This adaptive grid movesibaneously in parallel in each direction to treat the ragd
violently-varied flows according to a monitoring functidrhe algorithm is simple, and the computation of spatiahderi
tives is efficient. It is a grid-regeneration scheme, butdtditional CPU-time for this scheme is trivial, since only a
single interpolation process is needed for both calcutabibthe advection process and estimation of values at the new
grid point from the old grid point.

This adaptive grid approach has been validated by problémislent free-surface flows in He [1], however interaction
with object/structure has not been studied. It is extendetbtient FSI problems in the present study, while the motibn
structure is not considered for simplicity.

2. Numerical Theory

The adaptive Cartesian-grid CIP method for the present atatipns is summarized in this section. The details of the
adaptive grid and stationary grid for the CIP method can baddn He [1] and Hu and Kashiwagi [2], respectively.

2.1 Flow Solver

We consider a viscous and incompressible flow. The govertugtions for the fluid velocity; in theith direction
and the pressunecan be expressed as follows:
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whereS;; = (Ou;/0x; + Ou;/dx;); pis the density of fluidy, (i = 1,2, 3) is the velocity component; anf] in Eq. 2
denotes the body force, such as the gravity force. No tunoglenodel is introduced here.

In order to apply the CIP schme, time evaluation of Eq. 2 i$quared by a fractional step method. The calculation of
equation is divided into an advection step and two nonadwvesteps as follows:
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As mentioned above, Eqg. 3 is the advection step, which issdby the CIP method. The pressure-velocity coupling is
treated in a non-advection step calculation, in which thieieng Poisson equation is solved,
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Equation 6 is valid for liquid, gas and solid phases. Once6Hg.solved, the distribution of pressure in the whole
computation domain can be obtained.

We treat FSI problem as a multiphase problem, which incluble=e phases (liquid, gas and solid). To recognize
different phases, a color functiafy, is introduced. In the present work, suffix denotes 1:liquid, 2:gas and 3:solid
phase. A computational cell is defined@s= 1.0 liquid cell, o = 1.0 gas cell, and’s = 1.0 solid cell. For each cell,
it has the relation o} ¢,,, = 1.0. Once the color function for all phases is determined, thesigial propertieg (e.g.

viscosity, density, pressure) for each computationalaalbe calculated by = anzl Gm G -
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Fig. 1 Definition of an adaptive Cartesian grid.

2.2 Adaptive Cartesian-Grid CIP Method

Firstly, the CIP method [5] for solving the advection pra&é&ssummarized. Then, the adaptive Cartesian-grid CIP
approach [1] is described. A one-dimensional advectiomtgu is used to describe the CIP method,
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wherer denotes physical property such as viscosity, density amsbpre. This equation represents a translational motion
of a wave with velocity:. The CIP scheme shows a different way from the conventidghtbrder schemes to reconstruct
the profile inside a grid cell. The principle concept of thePGhethod is that the value and its spatial derivative
q = Or/0z are used together to construct a cubic polynomial to apprate the profile between two neighbouring grid
points.

By differentiating Eq. 7 with respect tg, we obtain the following equation,
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The advection parts in Egs. 7 and 8 are solved by the CIP methéallows,
T;Hrl = R" (xi _ uiAt) (9)
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where superscripts andn + 1 denote thexth and(n + 1)th time step, respectively; subscripgneans théth grid point;

R™ andQ™ are the interpolation approximationsitt andq™, respectively. The profile between grid points at the time
step(n+1) is determined by shifting the profile withuAt. In other words, to calculate the value of grid point at theeti
step(n+1) is to find its upstream point at the time stepThis process has no mater with where the grid point (at the ti
step(n+ 1)) is located. Based on this characteristic of the CIP methodyel adaptive grid has been proposed by He [1].

The basic concept of this adaptive grid system is simple;iefft, and easy to extend to three-dimensional problem.
Figure 1 shows the schematic diagram of this adaptive gnidageh. The straight lines paralleledate or y-direction
move in parallel. Old grid point’ (io,jo) and New grid point’ (ix,jn) in Fig. 1 indicate the grid points at theh
and(n + 1)th time step, respectively. They are completely independed the grid number at each time instant can
be variable to adapt to the computational solution insteetasly. The procedure of this adaptive Cartesian-grid CIP
approach [1] is summarized as follows,



1. New grid points at the next time step are generated to ddapé computational solution according to a monitoring
function. In the present study, the following two-dimem&bmonitoring function is defined,
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wherea and g are user-defined scaling coefficients to control the levajraf-clustering, and) denotes the flow
properties, such as the density, color function, veloeity] so forth. It should be noticed that the monitoring fumcti
can be freely defined according to the computed problem.
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2. The physical values at the time step+ 1) such as density, velocity and pressure, are then evaluiatedianeously
during solving the advection process. Let us takeRhgrid point(z;, , y,, ) for example, which is shown in Fig. 1.
The value ofr"*! in Eq. 9 at thisP point is shifted from its upstream poift,, = (z;y — WAL,y — v;AL). Pyp
is easy to interpolated from the neighboring points at time tstepn, then the value oP grid-point is obtained.

3. The remaining nonadvection steps, Egs. 4-6, are solved.

It is important to note that the value-interpolation frone #id grid to the new grid is accomplished simultaneously
within the advection process, without additional valueppiag from old grid system to new grid system. It is the edaént
difference to most of re-meshing schemes, which take aagitiCPU-time due to the value-mapping from old grid to
new grid systems.

3. Numerical results

The first validation case is a 2D flow around a stationary sjaglinder. The Reynolds numberi& = pU B/u = 200,
where B is cylinder width,U is the velocity of uniform flow. Snapshots of the adaptivalgat several time instants
are shown in Fig. 2. A uniform grid generated at the initieldiis shown in Fig. 2(a), and an adaptive finer grid is then
generated simultaneously according to the computatiahatisn, as shown in Fig. 2(b, c). Itis found that the finest ¢
distributed around the body surface. The adaptive gridieggted automatically according to a user-defined moniori
function as shown in Eq. 11. It is clear that the fine grid isegated and distributed for sharply-changing regions aad th
coarse grid for steady regions.
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Fig.2 Snapshots of the adaptive grid in the test of a unifoow flow past a square cylinder.



The second validation case is collapsing water column witllastacle, which is a more challenging fluid-structure
problem with fluid splitting, merging and air-entrainmefithe computational conditions are set the same with experi-
mental measurement by Koshizuka et al. [4]. Figure 3 shoapshots of the adaptive grid at several time instants. It can
also been seen that an adaptive finer grid is generated ias&ously according to the computational solution, as show
in Fig. 3. Itis also found that the grid becomes insufficidierathe water impacting on the right vertical wall. It shdul
be pointed out that no special interface-capturing/tragkcheme is employed in this study.
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Fig. 3 Snapshots of the adaptive grid in the test of collapsiater column with obstacle.

4. Conclusions and Discussion

A new adaptive Cartesian-grid CIP method was validated loy2iy benchmark tests. One was a uniform flow flow past a
square cylinder, the other was collapsing water column antbbstacle. It was confirmed that the adaptive grid is capabl
of tracing regions with violent flows, and a finer grid is theangrated automatically to adapt to the violent changing of
the flows. Further study of extending this approach to otl@emt FSI problem with consideration of motion-free or
elasticity is still on the way.
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