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1. Introduction

Violent Fluid-Structure Interaction (FSI) is one of the most challenging problems in computational engineering. Due to
its extreme nonlinearity (e.g. wave breaking, splitting, merging and air-entrainment), most of the traditionally numerical
approaches based on the potential theory are invalid. The Computational Fluid Dynamics (CFD) method is a promising
tool to analyze these extremely-nonlinear FSI problems. The CIP (Constrained Interpolation Profile) method [5] is a
powerful CFD method for FSI analysis. Hu and Kashiwagi [2, 3]have developed a stationary Cartesian-grid CIP code for
extremely-nonlinear FSI.

Recently, an adaptive Cartesian-grid CIP method is proposed by He [1] to save CPU-time and capture the bound-
aries/interfaces accurately. This adaptive grid moves simultaneously in parallel in each direction to treat the region of
violently-varied flows according to a monitoring function.The algorithm is simple, and the computation of spatial deriva-
tives is efficient. It is a grid-regeneration scheme, but theadditional CPU-time for this scheme is trivial, since only a
single interpolation process is needed for both calculation of the advection process and estimation of values at the new
grid point from the old grid point.

This adaptive grid approach has been validated by problems of violent free-surface flows in He [1], however interaction
with object/structure has not been studied. It is extended to violent FSI problems in the present study, while the motionof
structure is not considered for simplicity.

2. Numerical Theory

The adaptive Cartesian-grid CIP method for the present computations is summarized in this section. The details of the
adaptive grid and stationary grid for the CIP method can be found in He [1] and Hu and Kashiwagi [2], respectively.

2.1 Flow Solver

We consider a viscous and incompressible flow. The governingequations for the fluid velocityui in theith direction
and the pressurep can be expressed as follows:
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whereSij = (∂ui/∂xj + ∂uj/∂xi); ρ is the density of fluid;ui (i = 1, 2, 3) is the velocity component; andfi in Eq. 2
denotes the body force, such as the gravity force. No turbulence model is introduced here.

In order to apply the CIP schme, time evaluation of Eq. 2 is performed by a fractional step method. The calculation of
equation is divided into an advection step and two nonadvection steps as follows:
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As mentioned above, Eq. 3 is the advection step, which is solved by the CIP method. The pressure-velocity coupling is
treated in a non-advection step calculation, in which the following Poisson equation is solved,
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Equation 6 is valid for liquid, gas and solid phases. Once Eq.6 is solved, the distribution of pressure in the whole
computation domain can be obtained.

We treat FSI problem as a multiphase problem, which includesthree phases (liquid, gas and solid). To recognize
different phases, a color functionφm is introduced. In the present work, suffixm denotes 1:liquid, 2:gas and 3:solid
phase. A computational cell is defined asφ1 = 1.0 liquid cell, φ2 = 1.0 gas cell, andφ3 = 1.0 solid cell. For each cell,
it has the relation of

∑

φm = 1.0. Once the color function for all phases is determined, the physical propertiesq (e.g.
viscosity, density, pressure) for each computational cellcan be calculated byq =

∑3

m=1
φm qm.
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Fig. 1 Definition of an adaptive Cartesian grid.

2.2 Adaptive Cartesian-Grid CIP Method

Firstly, the CIP method [5] for solving the advection process is summarized. Then, the adaptive Cartesian-grid CIP
approach [1] is described. A one-dimensional advection equation is used to describe the CIP method,
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wherer denotes physical property such as viscosity, density and pressure. This equation represents a translational motion
of a wave with velocityu. The CIP scheme shows a different way from the conventional high-order schemes to reconstruct
the profile inside a grid cell. The principle concept of the CIP method is that the valuer and its spatial derivative
q ≡ ∂r/∂x are used together to construct a cubic polynomial to approximate the profile between two neighbouring grid
points.

By differentiating Eq. 7 with respect tox, we obtain the following equation,
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The advection parts in Eqs. 7 and 8 are solved by the CIP methodas follows,

rn+1

i = Rn (xi − ui∆t) (9)

qn+1
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where superscriptsn andn+ 1 denote thenth and(n+ 1)th time step, respectively; subscripti means theith grid point;
Rn andQn are the interpolation approximations torn andqn, respectively. The profile between grid points at the time
step(n+1) is determined by shifting the profile with−u∆t. In other words, to calculate the value of grid point at the time
step(n+1) is to find its upstream point at the time stepn. This process has no mater with where the grid point (at the time
step(n+1)) is located. Based on this characteristic of the CIP method,a novel adaptive grid has been proposed by He [1].

The basic concept of this adaptive grid system is simple, efficient, and easy to extend to three-dimensional problem.
Figure 1 shows the schematic diagram of this adaptive grid approach. The straight lines paralleled tox- or y-direction
move in parallel. ‘Old grid point’ (iO, jO) and ‘New grid point’ (iN , jN ) in Fig. 1 indicate the grid points at thenth
and(n + 1)th time step, respectively. They are completely independent and the grid number at each time instant can
be variable to adapt to the computational solution instantaneously. The procedure of this adaptive Cartesian-grid CIP
approach [1] is summarized as follows,



1. New grid points at the next time step are generated to adaptto the computational solution according to a monitoring
function. In the present study, the following two-dimensional monitoring function is defined,
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whereα andβ are user-defined scaling coefficients to control the level ofgrid-clustering, andφ denotes the flow
properties, such as the density, color function, velocity,and so forth. It should be noticed that the monitoring function
can be freely defined according to the computed problem.

2. The physical values at the time step(n+ 1) such as density, velocity and pressure, are then evaluated simultaneously
during solving the advection process. Let us take theP grid point(xiN , yjN ) for example, which is shown in Fig. 1.
The value ofrn+1 in Eq. 9 at thisP point is shifted from its upstream pointPup = (xiN − ui∆t, yjN − vi∆t). Pup

is easy to interpolated from the neighboring points at the time stepn, then the value ofP grid-point is obtained.

3. The remaining nonadvection steps, Eqs. 4-6, are solved.

It is important to note that the value-interpolation from the old grid to the new grid is accomplished simultaneously
within the advection process, without additional value-mapping from old grid system to new grid system. It is the essential
difference to most of re-meshing schemes, which take additional CPU-time due to the value-mapping from old grid to
new grid systems.

3. Numerical results

The first validation case is a 2D flow around a stationary square cylinder. The Reynolds number isRe = ρUB/µ = 200,
whereB is cylinder width,U is the velocity of uniform flow. Snapshots of the adaptive grid at several time instants
are shown in Fig. 2. A uniform grid generated at the initial time is shown in Fig. 2(a), and an adaptive finer grid is then
generated simultaneously according to the computational solution, as shown in Fig. 2(b, c). It is found that the finest grid is
distributed around the body surface. The adaptive grid is generated automatically according to a user-defined monitoring
function as shown in Eq. 11. It is clear that the fine grid is generated and distributed for sharply-changing regions and the
coarse grid for steady regions.
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Fig. 2 Snapshots of the adaptive grid in the test of a uniform flow flow past a square cylinder.



The second validation case is collapsing water column with an obstacle, which is a more challenging fluid-structure
problem with fluid splitting, merging and air-entrainment.The computational conditions are set the same with experi-
mental measurement by Koshizuka et al. [4]. Figure 3 shows snapshots of the adaptive grid at several time instants. It can
also been seen that an adaptive finer grid is generated instantaneously according to the computational solution, as shown
in Fig. 3. It is also found that the grid becomes insufficient after the water impacting on the right vertical wall. It should
be pointed out that no special interface-capturing/tracking scheme is employed in this study.
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Fig. 3 Snapshots of the adaptive grid in the test of collapsing water column with obstacle.

4. Conclusions and Discussion

A new adaptive Cartesian-grid CIP method was validated by two 2D benchmark tests. One was a uniform flow flow past a
square cylinder, the other was collapsing water column withan obstacle. It was confirmed that the adaptive grid is capable
of tracing regions with violent flows, and a finer grid is then generated automatically to adapt to the violent changing of
the flows. Further study of extending this approach to other violent FSI problem with consideration of motion-free or
elasticity is still on the way.
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