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Highlightsq A semi-analytical method is presented that enables fast parameter studies of wave energy parks. The
results are compared with simulations from well-established software.q The simulations focus on finding guidelines for optimized parks with high and steady power output.q In particular, here we study how power fluctuations and average output power depends on the separating
distance between units and on the number of interacting units.

1 Introduction

In this paper, the interactions between water waves and floating buoys are studied. The buoys are connected to
linear generators on the seabed, modelling the wave energy converter (WEC) developed at Uppsala University
[1]. One single wave energy converter does not provide sufficient power for wave energy to be an effective energy
source. To produce a power of more than a few MW and enable an even power distribution, future designs will
necessarily include arrays of many absorbing units. As the individual units in these wave power parks interact
by scattered and radiated waves, the complexity of the model increases rapidly with the number of interacting
structures, and the numerical simulations are a challenge that call for new methods and theories.

In certain situations, assumptions such as the point-absorber [2, 3] or plane-wave [4, 5] methods can simplify
the calculations. However, future wave energy parks will most likely be forced to deploy devices in close
proximity, and full hydrodynamical interactions between all units should be considered. The exact multiple-
scattering theory originally established in [6, 7] has been further developed to enable simulations of a large
number of units in, e.g., [8, 9, 10]. In this paper, a simplified semi-analytical method based on the multiple-
scattering model is presented.

One of the largest costs associated with the installation of wave energy parks is the expensive and oversized
electrical system needed to handle large power fluctuations. An overall aim of this paper is to optimize the
design of wave energy parks to maximize the power output while minimizing the power fluctuations and used
ocean area. Several parameters may affect the performance: the number of devices, the separating distance
between adjacent units, the global and local geometry of the array, sea state and incoming wave direction, etc. In
two earlier papers [11, 12], several of these parameters were studied by calculating hydrodynamical coefficients
of full linear hydrodynamical interactions using the boundary element potential flow solver WAMIT. Whereas
the method is rigid and well-established, each array configuration must be studied separately by trial-and-error,
and the computational costs are high.

As an alternative, we develop a semi-analytical method to enable fast parameter studies. Instead of studying
each park configuration separately, the parameters can be varied continuously and give hints of optimal con-
figurations and parameter values. In the first stage presented here, scattering between the buoys is neglected,
but single-body diffraction and interaction by radiated waves between all units are included. The method is
very fast and gives remarkably good prediction on the studied wave energy park properties. The simulations
are compared with simulations using the numerical approach of the earlier papers [11, 12].

2 Theory

Linear potential flow theory Consider a volume of fluid with finite depth h and define a global coordinate
system (x, y, z) such that z = −h at the seabed and z = 0 at the undisturbed free sea surface, and N floating
cylinders with radius R and draft d, labelled by indices j ∈ [1, N ], and constrained to move in heave only. Divide
the fluid domain into interior and exterior domains underneath and outside each buoy. Under the assumption
of non-compressibility, homogeneous fluid density and negligible viscosity and vorticity, the governing equation
reduces to the Laplace equation ∆Φ = 0. Under the assumption of non-steep waves, the non-linear boundary



condition at the free sea surface can be linearised and the first order approximation taken. In addition, the fluid
is not penetrating the seabed or the floating bodies, and the full linear boundary conditions are
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where n is the normal direction of the body surface. The time-dependence is sinusoidal and can be factored out
as Φ(x, y, z, t) = Re(φ(x, y, z)e−iωt), where the angular frequency ω is related to the wave number k through
the dispersion relation ω2 = gk tanh(kh). Due to the linearity of the problem, the fluid potential will be a linear
superposition of incoming waves, scattered waves among the fixed cylinders, and radiated waves from the bodies
own oscillations, φ = φin + φS + φR. A general solution to the Laplace equation and the boundary conditions
in the exterior domain can be found by separation of variables. In local cylindrical coordinates (rj , θj , z) with
origin in the center of cylinder j, the solution takes the form
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where ψm(z) are normalized vertical eigenfunctions. The wave number k0 = −ik is a root to the dispersion
relation above and Kn(k0r) ∝ Hn

(1)(kr) and In(k0r) ∝ Jn(kr) correspond to propagating modes. The wave
numbers km, m > 0 are roots to the dispersion relation ω2 = −gk tan(kh) and correspond to evanescent modes.

Diffraction problem The diffraction problem is the solution to the scattering among fixed cylinders. Con-
sider an incoming wave with amplitude A and angle χ against the x-axis, and write the Bessel functions in terms
of the exponential function as φjin = −iAgψ0(z)eikrj cos(θj−χ)/ω. The diffracted wave in the exterior domain

will be a superposition of φjin and the scattered waves from the remaining cylinders. Defining λn = πn/(h− d),
a general potential in the interior domain underneath the cylinder can be written on the form
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Radiation problem The radiation potential φR is the solution to the problem of heaving cylinders and no
incoming waves φin. In the interior domain underneath the cylinder, the general solution is given as a sum
of a particular and a homogeneous solution, similar to the interior diffraction potential in equation (3), with
unknown coefficients amn. The general solution in the exterior domain is given on the form (2) with only
outgoing waves, i.e., Bmn = 0.

Dynamical equations The force of the waves on the floating bodies is given by the pressure integrated along
the wetted surface of the cylinder. In the frequency domain, this is proportional to the wave potentials,
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The first term resulting from the incoming and scattered waves, is the excitation force factor fexc; the second
term originating from the radiated waves is the radiated force frad, with real and imaginary parts proportional
to the added mass and damping coefficients, respectively.

The dynamics of each buoy is determined by Newton’s second law Ftot(t) = mz̈(t), where the total force is
a sum of the exciting force from incoming waves, the damping force from radiated waves, the statical restoring
force for submerged bodies and power take-off force. In the frequency domain, the equation of motion can be
solved for the vertical coordinate z(ω) as

z(ω) =
fexc(ω) ηin(ω)

−(m+madd(ω))ω2 − i(B(ω) + γ)ω + ρgπR2 + ks
= H(ω)ηin(ω), (5)

where H(ω) is the transfer function (response amplitude operator) and m is the total mass of the translator and
the submerged buoy. The vertical position of the buoy is then obtained in the time-domain by inverse Fourier

transform, z(t) = ẑ(ω) = (h ∗ ηin)(t), where h(t) is the transfer function in the time-domain. With the position
of the buoy in time determined, the absorbed power of the WEC can be calculated as P (t) = γż(t)2.

Variance As described above, one of the most important effects of park interactions is the reduction of power
fluctuations. The fluctuations in a park with N WECs can be measured in terms of the normalized variance of

the total power, v(N) = σ2(Ptot)/Ptot
2
, where σ is the standard deviation and Ptot the time-averaged power.



3 Method

In this paper, we study different parameters affecting the performance of wave energy parks, with the goal
to optimize the power quality. The simulations are performed using a numerical approach as well as a semi-
analytical method. Both consider non-steep waves based on linearized potential flow theory. The sea state used
in the simulations is characterized by energy period Te = 5.01 s and significant wave height Hs = 1.53 m. The
simulations presented here all consider arrays with square geometries.

3.1 Numerical approach

In the numerical approach, the hydrodynamical coefficients in equation (4) are calculated using the commercial
boundary element potential flow solver WAMIT. The output from WAMIT is used in a time-domain model in
Matlab calculating the dynamical equation (5), and the power and variance are calculated as described above.

3.2 Semi-analytical approach

In a first approach, we neglect multiple scattering among the buoys but include single-body diffraction and
interaction by radiated waves among all cylinders. In order to calculate the excitation and radiation forces (4)
in the z-direction, the potentials in the interior domains must be integrated along the bottom of the cylinders.
The wave numbers kn are solutions of the dispersion relation and the unknown coefficients γmn and amn in the
interior potentials can be found by requiring continuity between the exterior and interior domains and no-slip
condition on the cylinder surfaces. The constraints imply a system of equations that can be solved in terms of the
unknown coefficients. Due to axisymmetry only the n = 0 mode gives non-zero contribution to integration over

the cylinder bottom, and the exciting force factor can then be calculated as fexc = 2πiωρ
∫ R
0
dr rϕj,intD,0 (r,−d).

Similarly, the added mass and damping coefficients can be found from the radiation force as
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With the obtained hydrodynamical coefficients, the dynamics as well as the power and variance for all the
devices can be calculated in the time-domain as described in the previous section.

4 Results
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Figure 1: Comparison between the numerical (as-
terisks) and the semi-analytical (solid line) meth-
ods for power variance as a function of distance
between adjacent units in an array of 9 WECs.

In [11], rectangular and circular arrays with 32 WECs
were studied, and the circular geometry was found to have
roughly three times lower variance as compared to the rect-
angular geometry. In [12], the variance was found to reduce
strictly with the number of units along the wave direction if
the separating distance between adjacent units is kept con-
stant, but not otherwise. Hence, including more devices in
a wave energy park with fixed area will not necessarily re-
sult in lowered power fluctuations, which is of relevance for
design of full-scale wave energy parks. In the two papers
[11, 12], each array configuration was studied separately
by calculating the hydrodynamical coefficients in WAMIT;
a robust and reliable, but rather time-consuming method.
Here, we have presented a new method based on hydrody-
namical coefficients calculated semi-analytically using ex-
pansions in eigenfunctions. The semi-analytical method is
very fast and enables studies of parameters that can be
varied continuously.

In figure 1, square parks of 9 = 3×3 WECs are studied. As seen in the figure, the power variance fluctuates
as a function of the separating distance between adjacent units. The semi-analytical model (solid line) resembles
the results from the numerical method (asterisks) remarkably well. Different sea states will display different
fluctuating behaviour, as was discussed in [12].

The variance and average power per WEC as functions of the number of WECs in an array are plotted in
figure 2. The distance between adjacent units is kept constant to 10 m for all arrays. As seen in the figures, the
power fluctuations decrease strongly with the number of units. The average power per WEC also decreases, but
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Figure 2: Power variance and average power per WEC as functions of number of WECs.

to a smaller extent. Due to the high computational costs in the numerical model, the simulations are limited
to 64 = 8× 8 WECs. As a contrast, the analytical model allows for simulations of much larger arrays.

One of the main advantages of the analytical model is the short computational time. Whereas a simulation
of 50-100 WECs in the numerical method takes up to a week on a standard desktop computer, the analytical
method requires only a fraction of an hour. To be more precise, the simulations of parks with 4, 49 and 100
WECs required 0.4, 7.9 and 20.8 minutes, respectively.

5 Discussion

For the design of economically viable and effective wave energy parks, parameters affecting the power fluctuations
and the total output power must be considered carefully. Simulations with standard numerical software tend
to be very heavy when the number of interacting units in the park grows. Here, we have presented a semi-
analytical model that enables fast parameter studies of arrays. At this stage, the model includes interaction
by radiated waves but neglects scattering between buoys. The difference between the numerical and analytical
model in figure 2 is probably a result of this assumption; it is likely that the impact of scattered waves grows
with number of units. We intend to continue developing the analytical method in future publications.
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