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1 Introduction

The celebrated classical nonlinear shallow water (Saint-Venant) equations were derived in the
nineteenth century [13]. These equations are still widely used in practice and the literature counts
thousands of publications devoted to the applications, validations or numerical solutions of these
equations. Some important attempts have been also made to improve this model from physical
point of view. The main attention was paid to various dispersive extensions of shallow water
equations, leading to the so-called Boussinesq-type equations, e.g. [11, 12]. However, there are
fewer studies which attempt to include the bottom curvature effect into the classical Saint-Venant
equations, e.g. [3, 7].

The present study is a further attempt to improve the classical Saint-Venant equations by
including a better representation of the bottom shape. As a general derivation procedure, we
choose a variational approach based on a relaxed Lagrangian principle [2].

In the next Section, we present the derivation and discussion of some properties of the improved
Saint-Venant equations. Then we detail the hyperbolic structure in section 3 and give a numerical
example in section 4. Finally, we underline some main conclusions of this study in section 5.

2 Modified Saint-Venant equations

Consider an ideal incompressible fluid of constant density ρ in irrotational motion due to surface
gravity waves. The horizontal independent Cartesian variables are denoted by x = (x1, x2) and
the upward vertical one by y; y = 0 corresponds to the still water level. The fluid is bounded
below by an impermeable bottom at y = −d(x, t) and above by an impermeable free surface at
y = η(x, t), the total depth being h = d+η > 0. The horizontal and vertical velocities are u = ∇φ
and v = φy , where φ is a velocity potential and ∇ is the horizontal gradient.

The water wave equations can be derived from a variational principle [9], i.e. as the critical
point of a functional

∫∫∫

L d2x dt involving the relaxed Lagrangian density [2]:

L = (ηt + ũ · ∇η − ṽ)φ̃+ (dt + ǔ · ∇d+ v̌)φ̌− gη2

2
+

∫ η

−d

[

u
2 + v2

2
+ (∇ · u+ vy)φ

]

dy, (2.1)

where g is the acceleration due to gravity force, over ‘tildes’ and ‘wedges’ denoting, respectively,
quantities traces computed at the free surface y = η and at the bottom y = −d. We shall also
denote below with ‘bars’ the quantities averaged over the water depth.

In order to simplify the full water wave problem we choose some approximate, but physically
relevant, representations of all variables. In this study, we consider very long waves in shallow
water. This means that the flow is mainly columnar [10] and that the dispersive effects are
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negligible. In other words, a vertical slice of the fluid moves somehow like a rigid body. Thus, we
choose a simple shallow water ansatz, which is independent of the vertical coordinate y, and such
that the vertical velocity v equals the one of the bottom, i.e.,

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ v̌(x, t), (2.2)

where v̌(x, t) is the vertical velocity at the bottom. With this ansatz, the Lagrangian density (2.1)
becomes

L = (ht + ū · ∇h+ h∇ · ū) φ̄ − 1
2 g η

2 + 1
2 h (ū

2 + v̌2). (2.3)

In addition, we impose that the bottom impermeability is fulfilled identically, i.e., we take

v̌ = −dt − ū · ∇d. (2.4)

Substituting the relation (2.4) into Lagrangian density (2.3), the Euler–Lagrange equations yield

δφ̄ : 0 = ht + ∇ · [h ū ], (2.5)

δū : 0 = ū − ∇φ̄ − v̌∇d, (2.6)

δη : 0 = φ̄t + g η + ū · ∇φ̄ − 1
2 (ū

2 + v̌2). (2.7)

Taking the gradient of (2.7) and eliminating φ̄ from (2.6) yields the system of governing equations

ht + ∇ · [h ū ] = 0, (2.8)

∂t [ ū − v̌∇d ] + ∇ [ g η + 1
2 ū

2 + 1
2 v̌

2 + v̌ dt ] = 0, (2.9)

together with the auxiliary relations

ū = ∇φ̄ + v̌∇d, v̌ = − dt − ū · ∇d = −
[

dt + (∇φ̄) · (∇d)
] [

1 + |∇d|2
]−1

.

Further details on these equations and their variants can be found in [4].

3 Hyperbolic structure

From now on, we consider the equations (2.8) and (2.9) posed in 1D space for simplicity:

∂t h + ∂x [h ū ] = 0, (3.1)

∂t [ ū − v̌ ∂x d ] + ∂x
[

g η + 1
2 ū

2 + 1
2 v̌

2 + v̌ ∂t d
]

= 0. (3.2)

In order to make appear conservative variables, we introduce the potential velocity variable U =
φ̄x. From equation (2.6) it is straightforward to see that U satisfies the relation U = ū−v̌dx. Depth
averaged and vertical bottom velocities can be also easily expressed in terms of U . Consequently,
using this new variable equations (3.1), (3.2) can be rewritten as a system of conservation laws

∂t w + ∂x f(w) = 0, (3.3)

where we introduced the vector of conservative variables w and the advective flux f(w)

w =

(

h
U

)

, f(w) =

(

h [U − dtdx]
[

1 + d 2
x

]−1

g(h− d) + 1
2

[

U2 − 2Udxdt − d 2
t

] [

1 + d 2
x

]−1

)

.

The Jacobian matrix of the advective flux f(w) can be easily computed:

A(w) ≡ ∂ f(w)

∂w
=

1

1 + d 2
x

[

U − dtdx h
g (1 + d 2

x ) U − dtdx

]

.
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The matrix A(w) has two distinct eigenvalues:

λ± = [U − dt dx ]
[

1 + d 2
x

]−1 ± c = ū ± c, c2 ≡ g h
[

1 + d 2
x

]−1
.

Physically, the quantity c represents the phase celerity of long gravity waves. In the framework
of the Saint-Venant equations, it is well known that c =

√
gh. Both expressions differ by the

factor
[

1 + d 2
x

]−1/2
. Thus, in the modified Saint-Venant model, the long waves are slowed down

by bathymetric variations since fluid particles are constrained to follow the seabed.

4 Numerical experiment

The equations are solved numerically with a spacial finite volume scheme together with a high-order
adaptive time stepping. A higher-order spatial scheme is obtained using a piecewise polynomial
representation. This is achieved by various so-called reconstruction procedures [6, 8, 14]. In order
to solve numerically the last system of equations, we apply a third-order Runge–Kutta scheme
with four stages, with an embedded second-order method which is used to estimate the local error
and, thus, to adapt the time step size. The model details and its performance can be found in [5].
Several tests and comparisons will be presented at the conference.

Here, we focus of an illustrative example of the new modified Saint-Venant model: Wave
generation by a sudden bottom uplift. This simple situation has some important implications to
tsunami genesis problems. The bottom is given by the function

d(x, t) = d0 − a T (t) H(b2 − x2)
[

(x/b)2 − 1
]2

, T (t) = 1 − e−αt,

where H(x) is the Heaviside step function, a is the deformation amplitude and b is the half-length
of the uplifting sea floor area. The function T (t) provides a complete information on the dynamics
of the bottom motion.

Initially the free surface is undisturbed and the velocity field is zero. Some numerical results
of the moving bottom test-case are shown on Figure 1. In this case the differences between the
two models are obvious. The modified Saint-Venant equations give a wave with almost twice
higher amplitude. This is due to the fact that the wave propagates slower in the region of strong
bathymetry gradients in the mSV model. Some differences in the wave shape persist even during
the propagation. This test-case clearly shows the differences between the classical and modified
Saint-Venant equations. Many other differences and their physical implications will be discussed
at the workshop.

5 Conclusion

We derived a modified model of shallow water type which takes into account significant bathymetric
variations. Previously, some attempt was already made in the literature to derive shallow water
systems for arbitrary slopes and curvature [3, 7]. However, our study contains a certain number
of new elements with respect to the existing state of the art. First, our derivation procedure
relies on a generalised Lagrangian principle of the water wave problem [2]. Second, we do not
introduce any small parameter and our approximation is made through the choice of a suitable
constrained ansatz. Third, the resulting governing equations have a simple form and physically
sound structure. Fourth, new effects (e.g., speed decrease due to bottom slope) are predicted and
should be validated by further investigations.

The proposed model is discretised with a finite volume scheme with adaptive time stepping to
capture the underlying complex dynamics. The performance of this scheme will be illustrated on
several test cases [5] at the conference, as well as some implications to tsunami modelling.
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(a) t = 1.0 s
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(b) t = 1.5 s

Figure 1: Bottom uplift test-case (α2 = 12 s−1).
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