
Abstract for The 28th International Workshop on Water Waves and Floating Bodies, L'Isle sur la Sorgue, France, 7-10 April, 2013 

1-

 
 

Hypersingular integral-equation solution for a finite-draft surface-piercing 
cylindrical shell at high- and low-frequency 

 
Ronald W. Yeung* and Mohamed Hariri Nokob†   

Department of Mechanical Engineering 
University of California at Berkeley 

Berkeley, CA 94720-1740, USA 
* Correspondence author: rwyeung@berkeley.edu 

 † Presenter: mhariri@berkeley.edu 
 

 
 

1. Background 
 

 A monocolumn structure, with a circular moonpool 
and internal dock to act as a so-called HUB, is 
considered as an intermediate station for 
transporting people to offshore locations in the 
Santos Oilfield in Brazil [1]. Such designs are 
promising and considered to be built. A split 
opening in the design allows marine vehicles in and 
out, thus acting as a floating harbor. In this work, we 
present a simplified model of such a harbor and 
develop the numerics to analyze the problem 
eventually. The body S considered is a floating 
bottomless harbor of circular cylindrical shape of 
radius and draft floating in deep water (see 
Fig.1).  Modeling of similar problems using eigen-
function expansion method (EEM) gained interest in 
the 80’s (see, e.g. Yeung [2]).  
We consider a general point 𝑃=(𝑥,𝑦,𝑧) in the fluid 
domain and another point 𝑄=(𝜉 𝜂 𝜁) on the surface of 
S. The coordinate system is taken to be on the still 
free surface with the axis pointing upwards. We 
can state the “standard” problem as follows: 
 

∇2φ = 0      (1) 
φy −νφ = 0, y = 0 ; ∇φ = 0, y →−∞   (2) 

  φn =
 

V • n(P),
 

V = (U1, 0,U2), for P on S  (3) 
 

Here, the velocity potential isΦ = Re{φe−iωt} and 
(U1,U2)  are the surge and sway velocities of S.  
The frequency factor ν =ω 2 /gis either zero or 
infinite in this work. The thickness of the boundary 
wall is infinitely thin and accordingly, special 
treatment is required as compared to bodies of finite 
thickness. The BIM is known to have difficulties 
dealing with this kind of problems.  Hence we will 
use a special formulation for such thin-body 
geometry. The general integral equation over a three 
dimensional environment is given by:   

 

 
4πφ(P) = − φ(Q)

S

∫∫ ∂G(P,Q)

∂nQ

−G(P,Q)
∂φ(Q)

∂nQ

dSQ

   
4)

 

 

 

 
Figure 1: Sketch of the shell S and an arc-surface panel  

 
 

where is a suitable Green’s function. In this work, 
we consider the following form of 

G =
1

r1
±

1

r2

+ H (5) 

  r1,2 = (x − ξ)2 + (y ∓η)2 + (z − ς)2   (6) 
The sign in (5) is chosen if the zero- (or 
infinite-) frequency case is considered. r1  and r2  
correspond to the usual singular source and image 
reflection about y=0, respectively.  We take H=0  
here as it is regular when P →Q  and can be 
handled relatively easily compared with the singular 
term r1 .  For the thin shell case, only the dipole term 
remains, thus (4) reduces to  
 

4πφ(P) = − [φ(Q)]
S

∫∫ ∂G(P,Q)

∂nQ

dSQ
(7)

Here, [φ(Q)] ≡ φ(a+) −φ(a−) is the jump of φ  
across S and the integration is over the outside S 
only. Differentiation of (7) in the normal direction 
gives: 

4π
∂φ(P)

∂nP

=
−∂
∂nP

[φ(Q)]
S

∫∫ ∂ G(P,Q)

∂nQ

dSQ
(8) 

In (8), this normal velocity is explicitly given by (3) 
with a highly singular kernel.  Only one function 𝜙 
is present in this formulation. In fact, 𝜙 is 
proportional to the pressure difference across S and 
its solution is sufficient to compute the forces acting 
on the body.  
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The derivative in (8) can be taken under the integral 
sign on the condition that the integral be interpreted 
as a Hadamard finite part integral [3][4]. These 
integrals are usually difficult to compute and cannot 
be treated using standard quadrature method. The 
safest way to deal with them is by analytical 
integration when possible. This is the case in [5] and 
[6] for a flat surface (contour). The integral can also 
be treated by a process of regularization where the 
equation is written in terms of the unknown and its 
tangential derivative [3]. This procedure reduces the 
singularity of the integrand but leads to tangential 
derivatives, which are not needed for the problem 
and suffer from their own computational errors. By 
some transformations and Fourier expansions, the 
authors in [7] were successful in transforming the 
hypersingular equation to a one dimensional 
standard integral equation for the case of a flat disc. 
In this work, we tackle the problem hypersingularity 
using a combination of analytical integration and 
singularity separation.  
 

2. Analytical Integration of the Kernel 
The crux of the issue is to be able to evaluate the 
singular integrand of the integral equation (8): 

a[φ(Q)]
∂21/r

∂nP∂nQ

dηdθ
−d

0

∫
θ 0

2π −θ 0

∫               (9) 

This applies for both r1  and r2  in (5). In practice, 
this integral will be discretized and only the integral 
over a circular-arc panel quad of (ηi,ηi+1,θ j ,θ j +1)  is 
needed, where i and j denote the vertical and 
circumferential grid index (Fig. 1). The potential 
jump is assumed constant over each panel. The 
normal to the solid boundary in this case is given by: 
 

n = [cosθ,0,sinθ]               (10) 
 

on the outer side and the negative of that on the 
inner side. Defining so that over the surface of the 
body [x,z] = a[cosα, sinα] and noting that 
[ξ,ς] = a[cosθ, sinθ ], we get, with some effort: 
∂21/r

∂nP∂nQ

=
cosδ

(2a2(1− cosδ) + K 2)3 / 2

+
3a2(1− cosδ)2

(2a2(1− cosδ) + K 2)5 / 2

(11)

with the definitions δ = θ −α  and K =η ± y
depending on whether r1  or r2  is used. The 

integration limits are defined in an obvious 
manner. Analytical integration in the vertical 
direction over the panel surface leads to: 

K

2a2(1− cosδ) 2a2(1− cosδ) + K 2

+
K(1− cosδ)

2(2a2(1− cosδ) + K 2)3 / 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Ki

Ki+1

(12)

The case when  has a different result but is 
insignificant for the final evaluation. The expression 
of (12) has to be integrated circumferentially next 
over  on the panel. The second term integral is 
regular with no singular points and can be integrated 
numerically with ease. The first integral is singular 
at 𝛿 .  Using trigonometric identity, we can write 
the δ − integral as: 

1

4a2 sin2 δ
2

δ j

δ j+1

∫ K

4a2 sin2 δ
2

+ K 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Ki

Ki+1

dδ               (13) 

Three cases arise: Ki < Ki+1 < 0, 0 < Ki < Ki+1, and 
Ki < 0 < Ki+1. The first 2 cases are treated the same 
way and the integral (13) is made regular as follows: 

±
1

4a2 sin2 δ
2

δ j

δ j+1

∫ f (δ,Ki+1) − f (δ,Ki)( )dδ          (14) 

f (δ,K) =
K − 4a2 sin2 δ

2
+ K

2

4a2 sin2 δ
2

+ K
2

(15) 

The + ( ) sign in (14) is used for the first (second) 
case. The absolute values are merely enforced to 
make the correct Taylor series expansion in what 
follows. The fact that this integral is regular can be 
better seen from its Taylor series near : 

f (δ,K)

4a2 sin2 δ
2

=
1− 4S +1

4K 2S 4S +1

=
1− 3S +10S2 − 35S3

2K 2 + O(
S4

K 2 )
     

(16) 

with  S ≡ a2 sin2 δ
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ K 2 .              (17) 

This expansion can also be used for the numerical 
integration when variable 𝑆 is sufficiently small 
(<0.01).  For the third case ( Ki < 0 < Ki+1), (13) 
becomes: 

1

4a2 sin2 δ
2

δ j

δ j+1

∫ f (δ,Ki+1) + f (δ,Ki)( ) dδ

+
1

2a2 sin2 δ
2

δ j

δ j+1

∫ dδ

                 (18) 

The second integral in (18) is indeed the singular 
part and can be integrated analytically as follows: 

1

2a2 sin2 δ
2

δ j

δ j+1

∫ dδ = −
1

a2 (cot
δ j +1

2
− cot

δ j

2
) (19) 

while the first integral is regular as for the previous 
cases.  
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In this work, we are mainly interested in the added 
mass of the body. That is given by (surge and sway 
alike).  In the present notations: 

μ11 =
M11

2ρπa2d

=
1

2πa2dU1

a[φ1(Q)]cosθdηdθ
−d

0

∫
θ 0

2π −θ 0

∫

=
1

2πadU1

[φ1(Q)]ij cosθ jΔηΔθ
i=0

N1

∑
j =0

N2

∑

        (20) 

Here is the fluid density. The case for roll and 
pitch is very similar and the results are expected to 
be so as well and thus will not be shown here for 
brevity. 
 
3. Computational Results 
 

The hypersingular integral(-equatiuon) method 
(HIM) is verified by comparing the results to those 
from an alternative treatment using an eigenfunction 
expansion method that follows the work of [8].  
Unlike the case of [2] or [8], there is a significant 
increase in the number of unknowns with the open 
slit, since the vertical and circumferential 
eigenfunctions are fully coupled. A circumferential 
uniform grid is used for the HIM, as this will allow 
the use of rules of repetition to allow efficient 
computations of the influence coefficients of the 
integral equation (8).  In fact, a grid with a cosine 
distribution was found to produce only a slight 
improvement. The EEM coded was designed for 
finite water depth and finite frequency, while 
ideally, for comparison, we would like to use a 
method designed for infinite depth.  Nevertheless, by 
taking the frequency of the EEM code very low and 
very large, the limiting behavior of the potentials can 
be obtained. Naturally, numerical difficulties result 
in these extreme frequency limits and we only 
expect the EEM results to be sufficiently close to the 
real solutions.  The HIM has the advantage that a 
geometry with a slit opening requires the same 
computation time as for the closed body, contrary to 
the EEM which suffers from long computation times 
with an open body because of the large number of 
modal functions required for convergence.  
 

Table 1 (page 4) shows the surge added-mass results 
for the closed column (θo = 0 ) using the current 
method and the EEM, with the conditions of the 
latter taken close to their maximum allowed 
condition of the code. We consider 3 cases of mesh 
sizes of (N1 × N2)  in Eqn. (20): 20x20, 30x30, and 
40x40 panels for the HIM and 800 terms for the 
vertical modes of the EEM.  Successive columns of 
the table corresponds to the normalized surge added 
mass for increasing values of , at zero 
frequency.  Results for the three mesh sizes, are 

listed, with errors from the HIM computations 
compared to the EEM solution, which is highly 
accurate for the closed slit geometry (h: domain 
depth/a, K: wave-number).  It is clear from this table 
that the results match quite well. The results 
compare well for the case of a nonzero slit opening 
as well, but are not shown here for brevity.  For 
these open-slit cases, the HIM computes much faster 
than the EEM. Figs. 2 and 3 show the distribution of 
the jump in the potential (hence the pressure 
difference on the shell) for the surge and sway 
motion as indicated in the caption.  The slit has a 60-
degree opening.  The fact that the body acts as a 
doublet in the far field is clear from the positive 
pressure on one side and negative on the other.  This 
is not symmetric about the Oyz plane because of the 
nonzero opening. Surging in the direction of the slit 
lead to a large negative pressure at these sharp 
edges, where flow separation would be expected in a 
real fluid.  Swaying in the direction normal 
perpendicular to the slit-opening  leads to a solution 
similar to the closed cylinder. The drop in pressure 
at the bottom rim of the shell is also evident.  Figs. 4 
and 5 are plots of the surge and sway added masses 
as a function of the draft/radius ratio for several slit 
openings at these limiting frequencies. The coupling 
added masses μ12 = μ21 are zero by symmetry. 
Results for added mass in direction m (=1,2)for a 
body moving in an arbitrary direction , with 
respect to the x–axis, can be obtained as a linear 
combination of the surge and sway results in that 
direction as follows: 
 

                           (21) 
 

We note that the added masses (20) approach a 
fraction of 2 times the mass of the fluid in the 
cylinder when the draft increases to a large value.  
The fraction depends on θo .  The zero-frequency 
limit solutions approach these limits faster than the 
infinite-frequency case. In the meeting, the complex 
behavior of the results with the wave effects H in 
Eqn. (5) will be shown. 
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Figure 2: Potential jump over the surface of a surging 
shell with d /a = 2,θ0 = π /6  

Figure 4: Added mass (solid) and (dashed) at zero 
frequency versus for various slit opening

 

Figure 3: Potential jump over the surface of a swaying 
shell with d /a = 2,θ0 = π /6

 

Figure 5: Added mass (solid) and (dashed) at 
infinite frequency vs. for various slit opening 

Table 1: Convergence of the HIM and comparison to EEM for zero-frequency case (see text for details) 


