
Radiation and trapping behaviour of arrays of truncated

cylinders

H. Wolgamot R. Eatock Taylor P. H. Taylor
hugh.wolgamot@eng.ox.ac.uk r.eatocktaylor@eng.ox.ac.uk paul.taylor@eng.ox.ac.uk

Department of Engineering Science, University of Oxford,
Parks Road, Oxford OX1 3PJ, United Kingdom

1 Introduction

Trapped modes and the associated trapping struc-
tures are a topic which has excited some inter-
est in hydrodynamics over the past two decades.
The first trapped modes identified were local os-
cillations in the vicinity of fixed structures, now
called sloshing trapped modes and sloshing trap-
ping structures respectively. McIver and McIver
[2006] describe such a trapped mode as ‘a free os-
cillation of an unbounded fluid with a free surface
that has finite energy, does not radiate waves to
infinity, and in the absence of viscosity will per-
sist for all time.’ Sloshing trapping structures dis-
covered include toroidal shapes derived using an
indirect procedure and infinite arrays of bottom-
mounted cylinders - or the equivalent case of a
cylinder in a channel. True trapped modes cannot
be excited by an incident wave but near-trapped
modes, in which radiation (and hence decay rates)
are low but non-zero, may be excited by incident
waves. Finite arrays of bottom mounted cylinders
in linear and circular configurations have been
found to support near-trapped modes.

More recently the term motion-trapping struc-
ture has been introduced by McIver and McIver
[2006] to describe structures which can support
a local bounded oscillation (at the appropriate
frequency) in the vicinity of the structure while
the structure is free to move, with no radia-
tion to infinity. Such a structure must, in ad-
dition to possessing a wave-free frequency, sat-
isfy a resonance condition requiring the structural
and fluid inertia terms to balance any restoring
force terms at that frequency. Given an initial
displacement from equilibrium, such a structure
would eventually reach simple harmonic motion
at the trapped mode frequency (Porter and Evans
[2008]). The stiffness terms in the resonance con-
dition could be hydrostatic and/or mooring terms

and examples of each case have been studied.
Once mooring terms are introduced, any wave-free
structure can become a motion-trapping struc-
ture, so the more limited class of structure may
be that in which only hydrostatic restoring forces
are present. Motion-trapping structures without
moooring forces were considered by McIver and
McIver [2006], who constructed 2-dimensional mo-
tion trapping structures, while McIver and McIver
[2007] extended this approach to 3-dimensions and
Porter and Evans [2008] started with a pair of
rectangular cylinders or a thick-walled cylindri-
cal shell (in 2- and 3-dimensions respectively) and
varied the geometry to find motion trapping struc-
tures. Motion-trapping structures with moor-
ing restraints were studied by Evans and Porter
[2007] who found that a moored submerged cir-
cular cylinder moving in heave or sway could be
a motion trapping structure and Newman [2008]
who analysed mooring stiffnesses on the contin-
uum from −∞ to ∞.

A third class at the intersection of these two, de-
scribed by Fitzgerald and McIver [2010], is passive
trapping structures, which are sloshing trapped
modes which exert no force on the body, thereby
allowing the body to be freely floating without any
associated energy loss through radiation. These
modes are not considered here.

Arrays of truncated cylinders are also able
to support (sloshing) near-trapped modes; such
a mode was identified in the array of four
truncated cylinders investigated using a semi-
analytical method by Siddorn and Eatock Tay-
lor [2008] - the array is shown in Figure 1. In
this study the cylinders were also allowed to move
independently and the condition number of the
damping matrix used to identify frequencies where
almost-wave-free modes could occur. A paper pre-
sented by the current authors at an earlier work-
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shop (Wolgamot et al. [2011]) dealt with the di-
rectionality of optimum power absorption from ar-
rays of independently moving bodies. In that work
radiation from the array and the inverse of the
damping matrix for the array were of great im-
portance. The condition number of the damping
matrix is closely related, and in this paper we start
by studying the modes that may be identified us-
ing this method.
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Figure 1: Plan view of four cylinder layout. Cylin-
ders draft d = 2a, water depth h = 4a.

2 Four cylinders

The heave damping condition number plot of Sid-
dorn and Eatock Taylor [2008] is shown in Figure
2. Also shown in this figure are results from the
boundary element code DIFFRACT for the same
array of independently moving cylinders and the
condition number of the damping matrix when a
small-body approximation is made; that is, the
devices radiate but do not scatter. This latter
information is interesting in assessing the impor-
tance of scattering on the behaviour of the radiat-
ing bodies.

It appears that in heave there are two frequen-
cies in the range shown at which near-wave-free
modes occur - in fact, the plot for surge (not
shown here) is very similar, except that the fre-
quencies of each mode are slightly higher. The sec-
ond (higher frequency) mode corresponds approx-
imately to the sloshing near-trapping wavenumber
of the array.

To determine the body motion modes corre-
sponding to the respective peaks in the condi-
tion number plot the following method was em-
ployed, based on a similar application in Meylan
and Eatock Taylor [2009]. Consider the radiation
damping matrix B(k), a real, symmetric n x nma-
trix, and an associated vector of cylinder displace-
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Figure 2: Condition number of heave damping
matrix.

ments, z. An approximation to the wavenumber
of peak condition number may be denoted k0, and
we seek to solve the problem B(k)z = 0 near this
wavenumber. If we let the desired wavenumber
k = k0 + σ then, using a Taylor series expansion,
we may write:

(B(k0) + σ
dB

dk
)z = 0 (1)

which may be written as a generalised eigenvalue
problem and solved for eigenvalue σ and cor-
responding eigenvector z. Because DIFFRACT
was used to calculate hydrodynamic coefficients
we were unable to consider complex wavenum-
bers, but assume that the imaginary part of the
wavenumber is small at the near-wave-free fre-
quencies.

Using this method, the lowest-wavenumber
peaks in the condition number plot for heave and
surge radiation are found to give mode shapes with
all bodies oscillating in phase; i.e. z = [1, 1, 1, 1].
The higher frequency peaks in heave and surge
correspond to different modes, which will be dis-
cussed at the workshop. Thus the first peaks
in each case correspond to a minimum of radia-
tion from an oscillation of all cylinders as a single
rigid body. Damping coefficients for the cylin-
der array heaving as a single body were calcu-
lated using DIFFRACT, and are shown in Fig-
ure 3, where a minimum may be observed at the
expected frequency. In this Figure the damping
of the multi-column structure is compared to four
times the damping of a single heaving cylinder.
This minimum damping frequency has been pub-
lished previously in the results of Mavrakos [1991]
and Kagemoto and Yue [1986], although no com-
ment was made on the results. The minimum in



damping is quite significant, with a reduction in
damping from the reference case of four isolated
cylinders by a factor of about 30. As identified by
Siddorn and Eatock Taylor [2008], this motion is
an almost-wave-free mode. Attaching a spring of
the appropriate stiffness would make the structure
a ‘near-motion-trapping’ structure, which would
eventually experience a slowly decaying oscillation
at this frequency if given an initial displacement.
Surge results are similar and will be presented at
the workshop.
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4 cylinders
4 x (single cylinder)

Figure 3: Heave damping of four rigidly connected
cylinders.

The damping coefficient for the four heaving
cylinders moving in a rigid body mode may be
expressed as a combination of the elements of the
heave damping matrix for the array, according to:

B = 4(B11 + 2B21 +B41) (2)

using the symmetry of this problem. Some in-
sight into what is occurring at the near-wave-
free frequency may then be provided by using the
small body approximation, in which damping co-
efficients are proportional to J0(ks) where J0 is a
Bessel function of the first kind and s is the spac-
ing. Using this approximation, terms B21 and B41

will become negative when the s21 and s41 sepa-
rations (4a and 4

√
2a) cause the argument ks of

the Bessel function to pass beyond the first zero at
ks = 2.4048 and into the negative region. The B41

term will become negative first, followed by the
B21 term. At some middle point corresponding to
optimum cancellation of the radiated waves from
the respective cylinders the overall heave damping
will reach its minimum. The effect of scattering
shifts these behaviours in frequency, so that the
minimum for the full problem occurs at lower fre-
quency than the small body case.

The free surface elevations for the heave mode
show that the mode is a pumping mode, where
the free surface inside the array is displaced in
the opposite direction to the cylinders. A transi-
tion from preferential radiation along the diago-
nals of the square array at frequencies below the
near-wave-free frequency, to radiation perpendicu-
lar to the faces of the square at higher frequencies
is observed, with minimum radiation at some op-
timum intermediate frequency. The free surface
at this near-wave-free frequency is shown in Fig-
ure 4 and the radiation pattern may be readily
identified as intermediate between the two cases
discussed above.
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Figure 4: Free surface amplitudes at the first near-
wave-free frequency around four rigidly connected
cylinders oscillating in heave with unit amplitude.
The colour axis is limited such that the radiation
pattern external to the array may be seen.

This near-wave-free frequency has some in-
teresting consequences. The Haskind relations
relate the directionally averaged exciting forces
to the damping coefficients. Therefore, a non-
axisymmetric structure such as this will have dif-
ferent ratios of exciting force to damping (i.e. res-
onant response) at different incoming wave direc-
tions. For an optimum incoming wave direction
this may lead to a very large resonant response,
should the conditions for resonance be satisfied.

3 Eight cylinders

Porter and Evans [2008] found motion-trapping
modes in axisymmetric shells of rectangular cross-
section and many wave-free structures with an in-
ternal free surface have been reported. The simple
array of four cylinders considered above is a poor



approximation to a shell-like structure, but ex-
hibits a near-wave-free mode. This suggests that
a symmetric array with more cylinders could more
closely approximate a shell structure, and exhibit
more complete wave-free behaviour. To this end,
an array of 8 cylinders, moving as a rigid body,
was analysed using DIFFRACT. The cylinders,
of the same radius and draft as those considered
in Section 2, were placed with centres evenly dis-
tributed around the circumference of a circle of ra-
dius 5a. Note that this geometry falls outside the
range considered by Porter and Evans, but was
considered a convenient starting point. The heave
damping coefficient for this structure, plotted on
a logarithmic scale, is shown in Figure 5 and it is
evident that there is strong wave-free behaviour
at a frequency of around ka = 0.42. Indeed, the
damping coefficients calculated by DIFFRACT at
frequencies around the minimum (more accurately
located at ka = 0.4216) were very small negative
numbers, though monotonically increasing toward
zero with increasing mesh refinement. (Such very
small negative damping at a wave-free frequency
was also observed by Newman [2008] where calcu-
lations were performed using WAMIT. These re-
sults would appear to be an artefact of the bound-
ary element approximation in both codes.)
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Figure 5: Heave damping of 8 rigidly connected
cylinders, water depth h = 4a as above.

This structure does not satisfy the resonance
condition necessary for motion trapping in the ge-
ometry given, but the position of the resonance
can be adjusted by changing the draft of the cylin-
ders. Calculations indicate that an increase in
draft of approximately 3.5% is sufficient to cause
the resonance condition to be satisfied at the wave-
free frequency. To the accuracy of the method
used, the structure with the adjusted draft ap-

pears to be a motion-trapping structure, and can
be constructed quite simply using this approach.
The difficulty emphasised by Porter and Evans
[2008] in finding a motion-trapping frequency due
to the blow-up of the hydrodynamic coefficients at
frequencies surrounding the wave-free frequency
was not encountered, and may be due to their mo-
tion trapping being associated with higher modes
than the pumping mode considered here.

Further comparisons of this structure with other
known motion-trapping structures and related ob-
servations will be presented at the workshop.
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