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Introduction

This paper explores Stokes drift and net subsurface
transport by non-linear two-dimensional wave groups
with realistic underlying frequency spectra in deep wa-
ter. It combines analytical expressions from second-
order random wave theory with higher order approxi-
mate solutions from Creamer et al (1989) to give accu-
rate subsurface kinematics using the H-operator of Bate-
man, Swan & Taylor (2003). This class of Fourier series
based numerical methods is extended by proposing an
M-operator, which enables direct evaluation of the net
transport underneath a wave group, and a new conformal
mapping primer with remarkable properties that removes
the persistent problem of high-frequency contamination
for such calculations.

Although the literature has examined Stokes drift in
regular waves in great detail since its first systematic
study by Stokes (1847), the motion of fluid particles
transported by a (focussed) wave group has received con-
siderably less attention. Focussed wave groups are rele-
vant, because they can be used to describe the average
shape of an extreme wave crest in a random sea (Tro-
mans, Anaturk & Hagemeijer 1991). In practice, the
wave field on the open sea often has a group-like struc-
ture.

From mass conservation it is clear that Stokes drift by
a wave group and Stokes drift by regular waves behave in
a fundamentally different way. In fact, the wave-induced
Stokes drift and its associated return flow at depth
should be locally confined to the wave group and only
regular waves (infinite wave trains) can transport mass
and momentum indefinitely (McIntyre 1981). Second-
order wave theories (e.g. Dalzell 1999) based on the
interaction between waves of different frequencies (cf.
Longuet-Higgins 1962), predict an irrotational return
flow at depth that is equal and opposite to the flow
associated with Stokes drift at the surface, as illustrated
in figure 1. We show that these results can be extended
to higher order by retaining more of the non-linearity of
the underlying equations using the results of Creamer et
al (1989) with significant additional drift near the focus
point.

Figure 1: Illustration of the localized irrotational mass
circulation moving with the passing wave group. The
four fluxes, the Stokes transport in the near surface re-
gion and in the direction of wave propagation (left to
right); the return flow in the direction opposite to that
of wave propagation (right to left); the downflow to the
right of the wave group; and the upflow to the left of the
wave group, are equal.

Non-linear wave kinematics model
A two-dimensional body of water of infinite depth and
indefinite lateral extent is assumed with a coordinate sys-
tem (x,y), where x denotes the horizontal coordinate and
y the vertical coordinate measured from the undisturbed
water level upwards. Inviscid, incompressible and irro-
tational flow is assumed and the usual boundary condi-
tions (kinematic and dynamic at the free surface and a
no flow boundary condition at infinite depth) apply. In
order to study the drift beneath large waves, we adopt
the NewWave wave group of Tromans et al (1991) and
set each amplitude term to be proportional to its share
in the total discretized wave energy spectrum S(ω):

an = aL
S(ωn)∑N
n=1 S(ωn)

, (1)

so that the total maximum amplitude is aL and the
shape is that of the auto-correlation function for the sea
state. In particular, we consider a (discretized) Jonswap
spectrum for fetch-limited seas (Hasselmann, Dunckel



−80 −60 −40 −20 0 20 40 60 80
−15

−10

−5

0

5

10

15

20

x[m]

y
[m

]

x0 = 0 focus point

 

 
FC
FT

Figure 2: Particles trajectories at the free surface for a
focussed wave crest (FC) and a focussed wave trough
(FT) with a linear maximum wave amplitude aL = 15m.
The particles are at x0 = 0 at the time of focus.
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Figure 3: Net horizontal displacement ∆x = x(t =
−∞) − x(t = ∞) by a wave group travelling past as a
function of the maximum linear wave amplitude aL (i.e.
increasing steepness) for focussed crests (top line) and
focussed troughs (bottom line).

& Ewing 1980) and we set Tp = 12.4 and the peak-
enhancement factor γ = 3.3. A random wave solution
to the governing equation and the boundary conditions
that is linear in wave steepness (O(kη)) takes the form:

ηL(x, t) =

N∑
n=1

an cos(knx− ωnt+ µn)

φL(x, y, t) =
N∑

n=1

anωne
kny sin(knx− ωnt+ µn),

(2)

To include non-linear effects, we rely on the formula-
tion of Creamer et al (1989), who transform the surface
elevation η and the surface potential φs, the two canon-
ical variables that capture the (Hamiltonian) dynamics
of the entire problem, into a new set of canonical vari-
ables. These new variables exactly reproduce the second-
order non-linear behaviour of surface waves and provide
a remarkably good approximation to higher-order non-
linearity. The nth Fourier component of the transfor-
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Figure 4: Particles trajectories at the free surface for a
focussed wave crest (FC) with a linear wave amplitude
aL = 15m for two different particles located at x0 =
−1980 m and x0 = 0 m (focus point) at the time of
focus.
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Figure 5: Net horizontal displacement ∆x = x(t =
−∞) − x(t = ∞) by a wave group with a linear max-
imum wave amplitude aL = 15 m of particles at the free
surface as a function of their location at the time of focus
x0 = x(t = 0).

mations of surface elevation ηn and the surface potential
φs,n on this non-linear free surface are given by (Creamer
et al 1989):

ηn =
1

|kn|

∫ ∞

−∞

(
eiknη̃L(x) − 1

)
e−iknxdx,

φn =
1

|kn|

∫ ∞

−∞
eiknη̃L(x)φ̃′L(x)e

−iknxdx,

(3)

where η̃L(x) is the Hilbert transform of the linear free
surface signal ηL(x) and φ̃′L is the Hilbert transform of
the spatial gradient of the linear velocity potential.

Conformal mapping

We introduce the following conformal mapping to reduce
the steepness of the surface profile to in turn improve
the convergence behaviour of the H-operator of Bateman,
Swan & Taylor (2003) to calculate subsurface kinematics
and eliminate persistent high-frequency contamination



without having to resort to filtering:

ξ = z + iA− i

n=N∑
n=0

ane
−i(knz−ωnt+µn), (4)

where z = x + iy are the complex coordinates in real
space and ξ = α + iβ are the complex coordinates in
transformed space. The coefficients an and kn are, re-
spectively, the wave amplitude and the wave number
of the first N components of the underlying linear sig-
nal. We demonstrate that (4), when applied inversely,
for regular waves almost exactly maps a straight line in
ξ-space (β = 0) to the free surface corresponding to a
fifth-order Stokes expansion (cf. Fenton 1985) in z-space.
For wave groups, the mapping (4) applied inversely maps
a straight line into a wavy surface which exactly repro-
duces the features of a second-order free surface (e.g.
Dalzell 1999) excluding the rather small effect of the fre-
quency difference terms.
From the definition of the complex potential Ψ = φ+

iψ, a relationship between the velocities in z and ξ-space
can be found:

u− iv =
dΨ

dz
=
dΨ

dξ

dξ

dz
=

(
uα − iuβ

)dξ
dz
. (5)

By first mapping to a reduced steepness surface, apply-
ing the operators in this space and then mapping back,
the persistent problem of high-frequency contamination
is effectively eliminated removing the need for inevitably
arbitrary numerical filtering.

The M(ass flux)-operator
To directly evaluate the mass flux beneath a given wave
profile, we propose a new operator based on the principle
of the H-operator of Bateman, Swan & Taylor (2003),
which we term the M-operator. The general solution
for the velocity potential as a solution to the governing
Laplace equation ∇2φ = 0 can be given by the sum of N
Fourier components (cf. equation 2). From the Cauchy-
Riemann equations for an irrotational and incompress-
ible two-dimensional flow field, we have ∂φ/∂x = ∂ψ/∂y.
The partial derivative of the velocity potential ∂φ/∂x can
be evaluated from (2) to give a solution for the stream
function ψ expressed as an indefinite integral:

ψ(x, y, t) =
N∑
n

Ane
kny cos(knx−ωnt+µn)+f(x, t), (6)

where the stream function (6) is now defined up to an
arbitrary function of x and t, f(x, t). We can define
ψs(x, t) = ψ(x, η(x), t) − ψ(x,−∞, t) as the total mass
flux (per unit width and with unit density) below the
free surface:

ψs(x, t) =

N∑
n

Ane
knη(x,t) cos(knx− ωnt+ µn). (7)

The coefficients An and hence the value of the volume
flux ψs(x, t) can now be obtained from a procedure (the
M-operator) similar to the H-operator of Bateman, Swan
& Taylor (2003). Making use of the properties of the
complex potential across conformally mappable spaces,
the M-operator can be applied in ξ-space to avoid
high-frequency contamination and ensure convergence.

Result 1: Stokes drift

As the particles undergoes its otherwise circular motion,
two factors contribute to Stokes drift at the free surface:
deviation from the still water level z = 0 and devia-
tion from the initial horizontal position x0. Using linear
kinematics, the net horizontal displacement by a pass-
ing wave group ∆x = x(t = ∞) − x(−∞) of a particle
at the surface can thus be obtained by integrating the
horizontal velocity u(x, η(x, t), t) with respect to time:

∆x =

∫ ∞

−∞

dx

dt
dt =

N∑
n=1

a2nωnkn
2

T ∗ +O(ε3), (8)

where T ∗ = 2π/∆ω is the repeat period of the discretized
(with intervals ∆ω) frequency spectrum 1 and only up to
second-order in wave steepness are included.

By numerically solving the two simultaneous differen-
tial equations for the position of a particle that is initially
at the surface (and thus stays there):

dx

dt
= u(x, y, t),

dy

dt
= w(x, y, t), (9)

we also evaluate the Stokes drift in a framework in which
kinematics are described by Dalzell’s (1999) second-order
wave theory and the Creamer transform. Figure 2 traces
out the orbital paths that are described by a particle
that is located at the focus point at the time of focus
t = 0 for a focussed crest and a focussed trough based
on the non-linear kinematics obtained from the Creamer
transform. A large part of the transport is performed by
just a few large orbits close to the focus point, where the
surface elevation is large and the waves are at their most
non-linear.

Figure 3 then compares the net horizontal displace-
ment by a passing wave group ∆x of a particle at the
surface located at the focus point at the time of focus
calculated by three different methods: the analytical ex-
pression based on linear wave theory (8) and the numeri-
cal solutions based on Dalzell’s (1999) second-order ran-
dom wave theory and the Creamer transform. It is evi-
dent from this figure that the horizontal displacement in-

1Note that (8) is not a function of the number of components
N as N becomes large. To see this, note an ∼ N−1 and T ∗ ∼ N
resulting in the individual terms in the sum (8) to behave as N−1.
Summing over all the N terms then cancels the dependency on N .
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Figure 6: Net depth-integrated mass flux at the fo-
cus point as a function of time evaluated from linear
theory, using the second-order random wave theory of
Dalzell(1999) and the M-operator applied to the more
non-linear signal obtained from the Creamer transform
(aL = 15 m).

creases with increasing wave amplitude and hence, keep-
ing the other parameters of the spectrum fixed, increas-
ing wave steepness and that non-linear effects are impor-
tant.

It is evident from (8) that displacement predicted
based on linear theory is not a function of the initial
position of the particle. Close to the focus point, the
net displacement will be produced by a few large orbits,
whereas away from the focus point, where the wave
group is dispersed, the equivalent net displacement is
produced by a large number of small orbits. Comparing,
on the other hand, the trajectories of two particles,
one located at the focus point at the time of focus
and one very far away from it, obtained from the
non-linear kinematics and surface elevation through
the Creamer transform, figure 4 shows very different
behaviour. Clearly, a particle at the focus point at the
time of focus is transported further mainly by one or
two large orbits corresponding to the highest few peak
of the wave group. Figure 5 shows the net displacement
∆x as a function of the position of the particle at the
time of focus x0 confirming an additional drift effect
for particles within ∼ ±2λp of the focus point at the
time of focus, where here λp ≈ 240 m. For a relatively
steep wave considered herein (cf. kpaL ≈ 0.39), the net
displacement ∆x in this region is approximately two
times the net displacement predicted by linear theory.

Result 2: Return flow and net transport

One of the fundamental properties of wave groups is that
the surface elevation returns to the still water η(x) → 0
as x→ ±∞. The same applies to the kinematics. In fact,
close to focus, non-zero surface elevation and kinematics
are confined to ≈ ±4λp of the focus point. The transport

of fluid in the direction of wave propagation by Stokes
drift at and near the surface must therefore be compen-
sated by a return flow at depth in the opposite direction
to ensure conservation of mass. Creamer et al (1989), al-
beit only for a narrow-banded wave group, show that this
is indeed the case for the non-linear wave profile obtained
using their transform. For second-order random wave
theories, the frequency difference terms (k1 − k2) of the
horizontal velocity are responsible for this return flow.
These terms have a repeat period of (2π/∆ω), where
∆ω is the interval of the discrete frequency spectrum. In
the limit ω → 0, which corresponds to an infinite num-
ber of representative Fourier components N → ∞ and
the limit in which the wave group is truly localized and
not periodic with a very long repeat period, these terms
therefore correspond to a net flow, which only decays
very slowly with depth (cf. exp(|k1 − k2|y)).

The M-operator is applied in figure 6 showing the zero-
mean depth-integrated mass flux underneath a focussed
crest from linear theory, Dalzell (1999) second-order ran-
dom wave theory and the Creamer transform as a func-
tion of time. It is evident from this figure that non-linear
effects account for a larger local transport of mass by the
largest crest, which is compensated by a greater return
flow underneath the troughs. A second feature is that the
time integral of the depth-integrated flux for all cases is
zero, to within the numerical accuracy of the computa-
tions, as would be expected from continuity.
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