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1. Introduction

In a linear treatment, the problem of oscilla-
tions of a submerged body under a free surface
and the resulting hydrodynamic loads have been
thoroughly studied. A wide range of mathematical
techniques was given by Linton & McIver (2001)
for the solution of problems involving the inter-
action of waves with structure. Extensive biblio-
graphical notes were made in this book. However,
to the author’s knowledge, there is no study on
wave structure interaction problems in fluid hav-
ing mixed boundary conditions on the upper sur-
face.

In this paper, the linear 2-D water-wave prob-
lem describing small oscillations of a horizontal
cylinder is considered. The surface of an ideal and
incompressible fluid of finite depth is partly cov-
ered by a semi-infinite thin elastic plate with a free
edge. The solution is written as a distribution of
mass sources over the surface of the cylinder and
an integral equation is applied for the unknown
source strength. Appropriate Green’s function is
introduced using the method of matched eigen-
function expansions in much the same manner as
in paper by Sahoo et al. (2001). Generation of
flexural gravity waves by a submerged cylinder un-
der infinite elastic plate was considered by Sturova
(2011).

2. Statement of the problem

Let a Cartesian coordinate system be taken
with the x-axis directed along the undisturbed
upper boundary of the fluid perpendicular to the
cylinder axis, and the y-axis pointing vertically
upwards. The fluid is assumed to be inviscid and
incompressible; its motion is irrotational. A semi-
infinite elastic plate floats on the surface of the
fluid ( Figure 1). The surface of the fluid that is
not covered with the plate is free. The plate draft
is ignored. The fluid depth is equal to H. The
wave motions are generated in the fluid by the
small oscillations of submerged rigid body with
wetted surface S at a frequency ω with amplitudes
ζj (j = 1, 2, 3) for the sway, heave and roll prob-
lems, respectively.

Under the usual assumptions of linear theory,
the time-dependent velocity potential can be writ-
ten as

Φ(x, y, t) = ℜ

[

iω
3

∑

j=1

ζjϕj(x, y) exp(iωt)

]

,

where ϕj(x, y) are complex valued functions and
t is time. The radiation potentials ϕj(x, y) satisfy
the Laplace equation in the fluid domain

∇2ϕj = 0 (−∞ < x <∞, −H < y < 0) (1)

except in the region occupied by the cylinder.

Figure 1: Schematic diagram.

The free surface condition in the open water
region is given by

g∂ϕj/∂y−ω
2ϕj = 0 (−∞ < x < 0, y = 0), (2)

where g is the acceleration due to gravity. It is as-
sumed that the plate is a thin homogeneous elastic
material with uniform mass density ρs and thick-
ness d. The plate is in contact with the water at
all points for all time. On the elastic covered sur-
face, the radiation potentials ϕj(x, y) satisfy the
boundary condition in the form

(

D
∂4

∂x4
− ω2M + gρ

)

∂ϕj

∂y
− ρω2ϕj = 0 (3)

(0 < x <∞, y = 0),

where D = Ed3/[12(1 − ν2)], M = ρsd, E is the
Young’s modulus for the elastic plate, ν is its Pois-
son’s ratio, ρ is the fluid density. At the plate



edge, free edge boundary conditions require van-
ishing bending moment and shear force:

∂3φj

∂x2∂y
=

∂4φj

∂x3∂y
= 0 (x = 0+, y = 0). (4)

The boundary condition on the closed smooth
contour of the submerged body S has the form:

∂ϕj/∂n = nj (x, y ∈ S). (5)

Here, n = (nx, ny) is the inward normal to the
contour S. The notations

n1 = nx, n2 = ny, n3 = (y−y0)n1−(x−x0)n2

are used where x0, y0 are the coordinates of the
center of the roll oscillations.

The boundary condition at the bottom is

∂ϕj/∂y = 0 (−∞ < x <∞, y = −H). (6)

In the far field a radiation condition should be
imposed that requires the radiated waves to be
outgoing.

3. Method of solution

In order to solve the boundary-value problem
(1)-(6), we introduce an unknown mass-source dis-
tribution σj(x, y) over the contour S. We can now
represent the radiation potentials at any point of
the fluid in the form

ϕj(x, y) =

∫

S

σj(ξ, η)G(x, y; ξ, η)ds. (7)

Here, G(x, y; ξ, η) is the Green function of the
problem, which determines the velocity potential
initiated by an oscillating mass source with unit
strength, where (x, y) is the field point and (ξ, η) is
the source point. The Green function must satisfy
the following equation

∇2G = 2πδ(x− ξ)δ(y − η)

with the boundary conditions analogous to (2)-(4),
(6) and the radiation condition in the far field, and
δ is the Dirac delta-function.

In order to obtain the solution for the Green
function, the eigenfunction expansion-matching me-
thod is employed. The fluid domain is divided into
two regions: the downstream open region Γ1

(−∞ < x < 0, −H < y < 0) and the upstream
plate-covered region Γ2 (0 < x < ∞, −H < y <
0). The solution for the Green function depends
significantly on the position of the source point.

Case 1: source in Γ1 (ξ < 0).
In this case the value of G(x, y; ξ, η) in Γi is de-

noted by G
(1)
i (x, y; ξ, η) (i = 1, 2). These functions

will be sought as expansions in terms of eigenfunc-
tions of corresponding boundary value problems:

G
(1)
1 = G

(1)
0 +R

(1)
0 eik0xψ0(y)+

∞
∑

m=1

R(1)
m ekmxψm(y) (x < 0), (8)

G
(1)
2 = T

(1)
0 e−ip0xf0(y)+

∞
∑

n=−2
n6=0

T (1)
n e−pnxfn(y) (x > 0), (9)

where

ψ0 = cosh k0(y +H)/ cosh k0H,

ψm = cos km(y +H)/ cos kmH (m = 1, 2, 3, ...),

f0 = cosh p0(y +H)/ cosh p0H,

fn = cos pn(y+H)/ cos pnH (n = −2,−1, 1, 2, 3, ...).

The constants km’s satisfy the dispersion relations

K = k0 tanh k0H =

−km tan kmH (m = 1, 2, 3, ...), K = ω2/g

with (m− 1)π/H < km < mπ/H (m = 1, 2, 3, ...).
The constants pn’s satisfy the dispersion relations

K = p0(1 + Lp4
0) tanh p0H =

−pn(1 + Lp4
n) tan pnH (n = −2,−1, 1, 2, 3, ...)

with L = D/(gρ − ω2M) and K = ρω2/(gρ −
ω2M). It should be noted that p−2 and p−1 are
complex conjugates with positive real parts, pn’s
are positive and real with (n − 1)π/H < pn <

nπ/H (n = 1, 2, 3, ...), and R
(1)
m , T

(1)
n are unknown

constants to be determined to obtain the Green
function completely. The function G

(1)
0 (x, y; ξ, η)

is a velocity potential due to a source submerged
under infinite free surface

G
(1)
0 = ln

r

r1
+ pv

∫ ∞

0
F1(y, η; k)

cos k(x− ξ)

Z1(k)
dk−

iπF1(y, η; k0)
cos k0(x− ξ)

Z ′
1(k0)

, (10)

where pv indicates the principal-value integration,

r2 = (x− ξ)2 +(y−η)2, r21 = (x− ξ)2 +(y+η)2,



F1 =
2

k(1 + e−2kH)
{[(k cosh kη + K sinh kη)e−ky−

(K + k)eky sinh kη]e−2kH + kek(y+η)},

Z1(k) = K − k tanh kH, Z ′
1(k0) ≡ dZ1/dk|k=k0

.

Because the velocity and pressure are contin-
uous across the boundary between the regions Γ1

and Γ2, the full solution is obtained from matching
conditions

∂G
(1)
1 /∂x|x=0− = ∂G

(1)
2 /∂x|x=0+,

G
(1)
1 |x=0− = G

(1)
2 |x=0+ (−H < y < 0).

Truncating the infinite series in (8), (9) and using
the inner products as in the paper by Sahoo et al.

(2001), unknown constants R
(1)
m and T

(1)
n can be

determined.
Case 2: source in Γ2 (ξ > 0).

The Green function G(x, y; ξ, η) in Γi is de-

noted by G
(2)
i (x, y; ξ, η) and in the corresponding

regions is expressed as

G
(2)
1 = R

(2)
0 eik0xψo(y)+

∞
∑

m=1

R(2)
m ekmxψm(y) (x < 0),

G
(2)
2 = G

(2)
0 + T

(2)
0 e−ip0xf0(y)+

∞
∑

n=−2
n6=0

T (2)
n e−pnxfn(y) (x > 0), (11)

where the function G
(2)
0 (x, y; ξ, η) is a velocity po-

tential due to a source submerged under infinite
elastic plate

G
(2)
0 = ln

r

r1
+ pv

∫ ∞

0
F2(y, η; p)

cos p(x− ξ)

Z2(p)
dp−

iπF2(y, η; p0)
cos p0(x− ξ)

Z ′
2(p0)

, (12)

where

F2 =
2

p(1 + e−2pH)
{(p(Lp4 + 1)×

[(e−py cosh pη − epy sinh pη)e−2pH + ep(y+η)]−

2Ke−2pH sinh pη sinh py},

Z2(p) = K − p(1 + Lp4) tanh pH,

Z ′
2(p0) ≡ dZ2/dp|p=p0

.

Using boundary condition (5) on the body sur-
face S, we obtain the integral equation for the
functions σj(x, y)

πσj(x, y) −

∫

S

σj(ξ, η)
∂G

∂n
ds = nj .

Once the distribution of the singularities σj(x, y)
has been calculated, we can determine the radia-
tion potentials (7).

The radiation load acting on the oscillating
body is determined by the force F = (F1, F2) and
the moment F3 which, without account for the hy-
drostatic term, have the form

Fk =
3

∑

j=1

ζjτkj (k = 1, 2, 3),

τkj = ρω2

∫

S

ϕjnkds = ω2µkj − iωλkj ,

where µkj and λkj are the added mass and damp-
ing coefficients, respectively. There is the symme-
try condition τkj = τjk.

4. Numerical results

Let us consider the most simple particular case
of the problem when the elastic plate is substi-
tuted for the grid lid. In this case, boundary con-
dition (4) is replaced by non-flow condition

∂ϕ/∂y = 0 (0 < x <∞, y = 0).

The solution for the Green’s function G
(2)
0 can be

obtained from (10) putting K = 0. In addition
the integral in (12) is taken in the ordinary sense
and there is no term due to residue. The terms
with p−2, p−1, p0 are lacking in series (9), (11)
and pn = nπ/H (n = 1, 2, 3, ...). The calculations
are performed for the circular contour S : (x −
c)2 + (y + h)2 = a2, where a is the radius of the
circle and the coordinates of its center are equal
to x = c, y = −h (h > 0).

It is well known, that non-zero values of the
wave forces have only τ11 and τ22 for radiation by
a submerged circular cylinder under infinite free
surface. At the oscillations of the circular cylinder
under infinite grid lid, non-zero values have only
µ11 and µ22 and these values do not depend on
frequency ω.

However, more complicated behavior of the
wave forces takes place at mixed boundary con-
ditions. Figures 2 and 3 give respectively dimen-
sionless values of added mass and damping coef-
ficients: µ̄ij = µij/(πρa

2), λ̄ij = λij/(πρa
2ω) for

the circular cylinder as functions of dimensionless
frequency parameter ω̄2 = ω2a/g.



Figure 2: The added mass coefficients of a circular cylinder.

Figure 3: The damping coefficients of a circular cylinder.

The cylinder is submerged at h = 2a and
the depth of fluid is equal to H = 10a. Figures
2a, b, c and 3a, b, c give the values of wave forces
for the cylinder submerged under the free surface,
whereas figures 2d, e, f and 3d, e, f correspond to
the position of cylinder under the grid lid. In fig-
ures 2a, c, d, f , the horizontal arrows indicate the
values of the added mass coefficients µ̄11 ≈ 1.1743
and µ̄22 ≈ 1.1361 for infinite grid lid. The dot-
ted lines in figures 2a, c and 3a, c represent the
values of added mass and damping coefficients for
the circular cylinder submerged under infinite free
surface, respectively.

More detailed results for the hydrodynamic

load on the cylinder will be presented at the Work-
shop.
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