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1. INTRODUCTION 

Splashing following the collisions of liquids or 

granular materials is often observed in a variety of 

natural and engineering problems, such as plunging or 

breaking water waves, liquid droplets impacting on a 

free surface or a thin film of the same liquid, etc.  

Splashing leads to fluid fragmentation and the 

generation of drops and spray as well as fluid aeration. 

These phenomena involve the momentum and energy 

exchanges processes at the air-liquid interface, 

evaporation and air entrainment, cavity, bubbles, 

secondary drops, erosion, noise and sprays. A review 

of this of kind problem was presented by Yarin [1], 

which focused on drop impacts on thin liquid layers 

and dry surfaces. Kiger & Duncan [2] described the 

mechanism of air-entrainment, and Thoroddsen [3] 

centred the discussions on the initial stage of drop 

impact when liquid masses come into contact and 

coalesce. The current mathematical models may not be 

able to cover all the problems mentioned above. 

Nevertheless the formation of the splash jet and its 

effects on the main flow plays a major role in these 

phenomena. The present work aims to shed some light 

along this direction. 

Much of the work on splashing jet has mostly been 

based on experimental observation. Although this has 

greatly improved our understanding, it is still far from 

giving a thorough insight into this phenomenon, 

especially at the initial stage of impacts when physical 

parameters change rapidly. .  

Direct numerical simulations of splashing during 

droplets impacting on liquid layers were performed by 

Weiss [4] and Davidson [5] based on velocity potential 

theory with the boundary integral method and the 

surface tension was included. Their result showed that 

a splash jet might be formed, which moved close to the 

film, leading to the possibility of bubble entrapment. 

Incompressible Navier-Stokes equations with surface 

tension were solved numerically by Josserand & 

Zaleski [6]. The initial stage of a high speed droplet 

impact on a shallow water layer was investigated by 

Howison et al. [7] using the method of matched 

asymptotic expansions, with special attention given to 

the splash jet mechanics. A numerical investigation of 

splashing and wave breaking processes using the SPH 

method was performed by Landrini et al. [8]. Their 

numerical results reflected the experimental 

observations of breaking waves.  

In this study, we investigate impact between two 

liquid wedges of the same density. It is assumed that 

the liquid is inviscid and incompressible, the flow is 

irrotational. When gravity and surface tension forces 

are neglected, the flow is self-similar. Such a 

formulation with fully nonlinear boundary conditions 

may be applicable to two sharp cornered wave crests 

colliding with each other at initial stage, and to other 

similar problems. The integral hodograph method [9, 

10] is employed to derive analytical expressions for the 

complex-velocity potential, the complex-conjugate 

velocity, and the mapping function the physical plan 

and a parameter plan. The problem is reduced to a 

system of integro-differential equations in terms of the 

velocity magnitude and the velocity angle with the 

tangential direction of the liquid boundary. The results 

are presented as streamline patterns and the pressure 

distributions along the symmetry line of the wedge and 

near the root of the splash jet.  It is found  that the 

secondary impact could exist especially if the 

difference between the wedge angles is sufficiently 

large. The implications of such events are discussed. 

 

2. THEORETICAL ANALYSIS AND 

NUMERICAL RSULTS 

Two liquid wedges of half-angles   and  move in 

the opposite directions with velocity OV and DV ,  

respectively, and their apexes meet at point A  right 

before the impact at time 0t  , where the origin of the 

Cartesian coordinate system x y  is chosen. 

Dynamically, the problem depends on only the relative 

velocity O DV V . Here we consider the case in which 
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we fix OV  and adjust DV  to ensure that A  is the 

stagnation point. A sketch of the problem and the 

definitions of the geometric parameters are shown in 

figure 1a. The liquid wedges are assumed to be 

symmetric about the y  axis. For time 0t  , a splash 

jet with the tip at point C  appears, which is assumed 

to have evolved form A.  

 

 
Figure 1. Sketch of the collision of two liquid wedges: (a) 

the stationary plane; (b) the parameter plane. 

 

For a constant impact velocity of each liquid 

wedge, the time-dependent problem in the physical 

plane can be written in the stationary plane in terms of 

the self-similar variables / ( )Ox X V t , / ( )Oy Y V t . 

The complex velocity potential 

( , ) ( , , ) ( , , )W Z t X Y t i X Y t    for self-similar flows 

is written in the form 

2( , ) ( )OW Z t V tw z .   (1) 

The problem is to determine the function ( )w z  which 

conformally maps the stationary plane z  onto the 

complex-velocity potential region w . We choose the 

first quadrant of the   plane as the parameter region 

to derive expressions for the nondimensional complex 

velocity, /dw dz , and for the derivative of the complex 

potential, /dw d , both as functions of the variable  . 

Once these functions are found, the velocity field and 

the mapping function ( )z z   can be determined [9]. 

Conformal mapping allows us to fix three arbitrary 

points in the parameter region, which are O , C , and  

D  as shown in figure 1b. In this plane, the interval of 

the imaginary axis ( 0 1  , 0  ) corresponds to the 

free surface OC , and the interval ( 1   , 0  ) 

corresponds to  the free surface CD .  The positive real 

axis ( 0   , 0  ) corresponds to the symmetry 

line O D  . The point a   is the image of the 

stagnation point A   in the stationary plane z . The 

parameter a  is unknown and is to be determined as 

part of the solution.  

The boundary-value problems for the complex-

velocity function, /dw dz , and for the derivative of the 

complex potential, /dw d , can be formulated in the 

parameter plane. Then, applying the integral formulae 

determining an analytical function from its modulus 

and argument, and from its argument on the boundary 

of the first quadrant [9, 10], respectively, we obtain the 

following expression for the complex velocity and for 

the derivative of the complex potential:  
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where K is a real scale factor, 0 (0) 1v v    is the 

nondimensionalized magnitude of the velocity at point 

O , ( ) ( ) i      is a continuous function in which 

( )   is the angle between the tangential direction of 

the free surface and the velocity vector on the free 

surface, and i  are the jumps of the function ( )   

caused by corners of the flow boundary in the 

similarity plane.  

Dividing Eq. (3) by Eq. (2), we can obtain the 

derivative of the mapping function 

 /
dz dw dw

d d dz 
     (4) 

whose integration along the imaginary axis in the 

parameter region provides the free boundaries OC  and 

CD  in the z plane.  

The parameters a and K are determined from the 

following physical consideration that the tip of the 

splash jet, point C , is evolved from point A at which 

the origin of the coordinate system ( 0Z  )  is chosen. 

Denoting the coordinate of point C , CZ Z ,  the 

magnitude of the velocity CV  and the angle   with the 

x  axis, we can write the following equation in the 

similarity plane 

i

C Cz v e  ,     (5) 



where 1/ ( )C C Ov V V v    , arg( / ) idw dz    .  

/ ( )C C Oz Z V t  can be obtained by integration of the 

mapping function (4) from point A  to point C  along 

an arbitrary contour   in the parameter region shown 

in figure 1b. This equation makes it possible to 

determine the parameters K  and a , while the 

functions ( )v   and ( )   are determined from dynamic 

and kinematic boundary conditions which for the self-

similar flow take the form [9]:  
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where / ( )Os S V t  and ( )s s   is the spatial length 

coordinate along the free surface in the similarity plane 

obtaining by integration of / /
i

ds d dz d
 

 


  with 

using Eq.(4). 

By choosing in the Bernoulli equation the location 

of the reference point at the stagnation point A , 

putting there 0S   and ( , ) 0AW Z t  ,  and  taking 

advantage of the self-similarity of the flow, we can 

determine the pressure at any point of the liquid region 
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The method of successive approximations is used 

for solving the system of integro-differential equations. 

In figure 2, streamline patterns are shown for an 

upper liquid wedge of 10   and different angles 

of the lower liquid wedge. Here, the pressure 

coefficient along the line of symmetry 0x   and the 

"zero" streamline passing through point A  are also 

shown by dashed and dot-dashed lines, respectively. 

For the case shown in figure 2a the symmetry of the 

flow about the x  axis, is clearly seen. The obtained 

value of the tip angle   at point C  shown in figure 1a 

for two identical wedges is 9.47    which is close to 

the value 9.50  obtained by Semenov & Wu [11] 

as the double contact angle for a liquid wedge 

impacting a solid wall.  

The streamline patterns for an upper liquid wedge 

of 10  colliding with a lower wedge of  

30 , 70 , 90      respectively, are shown in figures 3b 

– 3d, respectively. For the case 30   , it can be 

seen that the splash jet is directed into the half-plane of 

the liquid wedge of smaller angle due to the larger 

momentum of the liquid wedge of larger angle.  

 

 

 
Figure 2. Streamline patterns (solid lines) and the pressure 

distribution along the y  axis (dashed line) and along the 

"zero” streamline starting at the origin (dot-dashed lines) for 

10    and  (a) 10   , (b) 30 , (c) 70  and  (d) 90 . 

Here, * *

p p pOc c c  , where *

pOc  is the pressure coefficient at 

point O  or at any point on the free surface.  

 

The dotted lines show the free surfaces of the 

undisturbed wedges at the same time point. It is seen 

that at some distance from the origin the dotted lines 

coincide with the free surfaces of the impacting liquid 

wedges. This distance corresponds to the region 

affected by the impact between the wedges. The  y 

coordinate of the tip of the undisturbed upper wedge is 

its incoming velocity which is obviously 1Ov y   . 

Similar the y - coordinate of the tip of the lower wedge 

a) b) 

c) d) 



is its incoming velocity. These figures show 1Dv y   

in these four cases. 

The streamline pattern for  70     in figure 2c 

shows that the splash jet moves into the free surface of 

the upper liquid wedge forming a cavity. At the same 

time, the velocity direction of the liquid in the splash 

jet, which can be seen as the streamline slope, is almost 

parallel to the undisturbed free surface of the upper 

wedge. This secondary impact is not included in the 

present model and therefore the result does not fully 

reflect the real physics. Another issue is about the 

closed cavity. For the similarity solution to hold, the 

pressure of the trapped air inside the cavity has to be 

constant in the similarity coordinate system when the 

size of the cavity expands in the physical system. This 

is of course hardly the case in the real flow. From a 

mathematical point of view, the splash jet moves into 

the second sheet of the Riemann surface without 

interaction with the main flow. 

The streamline pattern for 90    corresponding 

to a flat free surface is shown in figure 2d. The splash 

jet has moved further into the upper liquid wedge. In 

physical reality, the overlapping may lead to a bigger 

secondary impact between the splash jet and the wedge 

than in figure 2c. This could produce subsequent 

impacts and new splash jets. Such multi-impact 

processes with the formation of multiple cavities could 

produce a liquid/air mixture, liquid aeration, and the 

transformation of the splash jet into a spray, although it 

is speculative rather than conclusive at this stage. 

Similar situations occur for plunging breaking waves 

reviewed by Kiger & Duncan [2], in which the splash 

jet formed as a result of an impact between the wave 

crest and the free surface may be observed clearly in 

the case of oblique impacts or in the form of an 

air/liquid mixture in the case of nearly vertical impacts 

like a waterfall.  

The numerical solutions  are  compared with 

asymptotic predictions based on the extended 

Wagner’s theory in the small deadrise angle limit in 

which the half angle of both liquid wedges is close to 

/ 2 . In particular comparisons are made for the 

locations of the turning points (near the root of the 

splash jet); the splash jet thickness and length; and the 

pressure distribution on the line of symmetry of the 

wedge. The details will be presented  in the workshop.  
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