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1) Introduction

We consider a simple three-dimensional body entering vertically a liquid surface on which a regular
wave propagates. As a simple body, an elliptic paraboloid is chosen. It is defined by two curvature
radii at its initial contact point. The Wagner problem is posed in terms of the displacement
potential and Galin’s theorem is used to provide an analytical solution. Comparisons are done
with experimental results.

2) Boundary value problem

The linearized boundary value problem (BVP) is formulated in terms of the displacement po-
tential φ















∆φ = φ,xx + φ,yy + φ,zz = 0 z < 0
φ = 0 z = 0, (x, y) ∈ FS(t)
φ,z = −h(t) + f(x, y) − η(y, t) z = 0, (x, y) ∈ D(t)
φ → 0 (x2 + y2 + z2) → ∞,

(1)

where the regions FS(t) and D(t) are disconnected parts of the plane z = 0 and correspond to the
free surface and the wetted area of the body, respectively. A closed curve, which separates the
regions FS(t) and D(t), is denoted Γ(t) and is referred to as the contact line. The body shape is
represented by the equation z = f(x, y), where f(x, y) is a smooth positive shape function, h(t) is
the penetration depth of the body into the liquid and η(y, t) represents the propagating wave along
the y axis as illustrated below
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The draft of the elliptic paraboloid is H. Its equation in a local coordinate system (X,Y,Z)
attached to the body is

f(X,Y ) =
X2

2Rx
+

Y 2

2Ry
(2)

where (Rx, Ry) are the curvature radii at the initial contact point. The wave is described in a fixed
coordinate system attached to earth

η(y, t) = C (cos(κy − ωt + θ) − 1) (3)

This is an Airy wave of amplitude C propagating along the y axis. By tuning the phase θ, we
can manage to get a crest at time t = 0 and at the origin y = 0. We consider the first instant of
penetration and duration of penetration (until separation of the flow at the top of the shape) is
much smaller than the period of the wave T = 2π

ω . The circular frequency ω is related to the wave
number κ by using the dispersion relation in infinite depth ω2 = gκ, with g = 9.81m/s2. We first
choose the phase θ = 0 and we expand the shape of the wave for small time and around the origin
of the coordinate system, yielding

η(y, t) =
1

2Rv
y2 −

Vϕ

Rv
ty +

V 2
ϕ

2Rv
t2 + higher order terms (4)



where Rv = 1
Cκ2 is the curvature radius of the wave and Vϕ = ω

κ is the phase velocity. The Neumann
condition of BVP (1) reduces to

φ,z = −h(t) +
x2

2Rx
+

y2

2Ry
+

y2

2Rv
−

Vϕ

Rv
ty +

V 2
ϕ

2Rv
t2 (5)

The equivalent curvature radius R̃y is introduced

R̃y =
RvRy

Rv + Ry
(6)

It is worth noting that new curvature radius might be smaller than Rx, even though the radius Ry

is originally greater than Rx. As an example if Ry = 2m and Rx = 0.75m, the inequality R̃y < Rx

holds as soon as Rv < 1.2m. We use the following change of variables

x̃ = x, ỹ = y −
R̃yVϕt

Rv
, h̃ = h −

1

2

V 2
ϕ

Rv + Ry
t2 (7)

with the help of which the Neumann condition can be arranged as follows

φ,z = −h̃(t) +
x̃2

2Rx
+

ỹ2

2R̃y

(8)

which is a canonical form in order to apply Galin’s theorem as described in Scolan and Korobkin
(2012). The boundary problem with the condition (8) is equivalent to the problem of impact of a
fictitious elliptic paraboloid onto initially flat free surface without waves. The fictitious paraboloid
is different from the original one by the radius of curvature in y-direction and increased verti-
cal displacement of the body. It should be noted that h̃(t) contains an additional contribution

−1
2

V 2
ϕ

Rv+Ry
t2 = −1

2Gt2 which decreases the vertical acceleration. The dissymmetry of the entry due

to the propapating wave appears in the translational motion
R̃yVϕ

Rv
t = vt.

3) Expansion of the wetted surface

The displacement potential reads

φ(x, y, t) = −
2h̃b

3E(e)

(

1 −
x̃2

a2
−

ỹ2

b2

)3/2

(9)

where implicitely the wetted surface is elliptic with aspect ratio k and (a, b) are the lengths of its
major and minor semi axes respectively. The following identities are useful

2h̃ḃ = ˙̃hb,
ḃ

b
=

ȧ

a
(10)

They follow from the application of Galin’s theorem and the fact that
R̃y

Rx
is a constant in time.

The relations between the sizes of the wetted surface and the data of the problem are the following

b = ka =

√

2R̃yh̃

(

2 − k2
D

E

)

, a =

√

2Rxh̃

(

1 + k2
D

E

)

= ao

√

h̃ (11)

where K(e), E(e) and D(e) = (K(e) − E(e))/e2 are the standard Elliptic Integrals. Those are
functions of the eccentricity e =

√
1 − k2 only. The aspect ratio k is given by

k2
γ =

√

R̃y

Rx
= k2 1 + k2D/E

2 − k2D/E
(12)



In order to validate these results, we use the experimental data base obtained during the campaign
described in Scolan (2012). A regular wave is generated with amplitude C = 0.048m and period
T = 0.98s. The curvature radius is Rv = 1.186m. The corrected curvature radius appearing
after asymptotic expansion is R̃y ≈ 0.745m quite similar to the curvature radius along the x
direction which is Rx ≈ 0.75m. We expect that the wetted surface in expansion is circular. Among
the instrumentation used in the set-up, an immersed camera records the expansion of the wetted
surface at the sampling frequency 200Hz. The obtained pictures are shown below for the initial
stage of penetration.

To sum up the results, we compare in the figure below the time variations of the length of the semi
axes a and b given by equations (11).
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4) Local and global loads

The pressure is calculated from the second derivative in time of the displacement potential.

p = −ρφ,t2 (13)

After some algebra and by using the idendities (10), we arrive at

p =
ρ

E
√

F

(

ṀF +
1

2
MḞ

)

(14)

with

F = 1 −
x2

a2
−

(y − vt)2

b2
, M = 2h̃

(

ḃ +
v(y − vt)

b

)

(15)

The first order force follows from the integration of the pressure on the wetted surface. However
the boundary condition on the free surface and the continuity of the displacement potential (and
its derivatives) through the contact line, lead to the following expression of the vertical force

Fz = −ρ
d2

dt2

∫ ∫

D(t)
φdxdy (16)

By using (9), it is finally obtained

Fz =
4πρ

15E
k2a3

o

d2

dt2

[

h̃5/2
]

(17)

The time varitaion of Fz is plotted below.
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As usual the first order approximation overpredicts the force. If the experimental velocity and
acceleration are introduced in the theoretical force formulation, it is observed the influence of the
actual kinematics. Before separation occuring at t ≈ 0.04s, the error is about 20 %. The Modified
Logvinovich Model of the pressure must hence be used. Then the numerical integration of MLM
pressure reduces the discrepancy.
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