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1 Introduction
Recently there has been considerable interest in the investigation of ice-wave interaction problems due to an increase in scientific
activities in the polar regions. In order to understand the mechanism and effects of wave propagation through the marginal ice
zone in the polar regions, the ice-cover is modeled as a thin ice-sheet of which a very small part is immersed in water and is
composed of materials having elastic properties. The flexural gravity wave propagation in a two-layer fluid has been investigated
extensively which are substantiated by some notable works ( [1], [2], [3] ). To the best of the authors’ knowledge, no investigation
of flexural trapped waves in a two-layer fluid has taken place till date. In fact there has been relatively very few investigations
on trapped modes for a two-layer fluid with free surface ( [4], [5] ). A trapped mode has finite energy, does not radiate waves
to infinity, and will persist for all time. The significance of such a mode is that if, for a specified frequency of oscillation the
structure does not support a trapped mode, then the solutions to the radiation and scattering problems at that frequency are unique.

In the present work, we consider a two-layer fluid of finite depth bounded above by a thin ice-cover and below by an
impermeable horizontal bottom surface. The effect due to surface tension at the interface between the two fluids is neglected.
Under the usual assumptions of linear water wave theory and by using Multipole expansion method we examine the existence of
trapped mode when a horizontal, circular cylinder is placed in either of the layers.

2 Mathematical formulation
Cartesian coordinates are chosen with (x, y)- plane in the horizontal direction, z- axis in the vertically upward direction and
z = 0 as the mean position of the interface. Each fluid is assumed to be of infinite horizontal extent in x- and y- directions. The
potential flow theory ensures the existence of the velocity potential Φ(x, y, z, t) which satisfies Laplace’s equation
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Let ΦI be the potential in the upper fluid (of density ρI ), 0 < z < d and ΦII be the potential in the lower fluid (of density
ρII ), −h < z < 0. Denoting the ratio of the densities of the two fluids ρI/ρII(< 1) by ρ, the linearized boundary conditions at
the ice-cover, on the interface and at the bottom surface are:
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where D = L/(ρIg); L is the flexural rigidity of the elastic ice-cover, ε = (ρ0/ρI)h0; ρ0 is the density of the ice, h0 is the very
small thickness of the ice-cover.

It is assumed that the fluid motion is simple harmonic in time with angular frequency ω, so the velocity potential can be
expressed as Φm(x, y, z, t) = Re[φm(x, z)eilye−iωt], m = I, II . In this case each φm(x, z) satisfies Helmholtz equation
(∇2

x,z − l2)φm = 0.
Within this framework progressive waves take the form (up to an arbitrary multiplicative constant)
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with K = ω2

g , g being the acceleration due to gravity and u satisfying the dispersion relation

(u + Kσ)F+(u)e−2u(d+h) + (u−Kσ)F−(u)− (u + K)F−(u)e−2uh − (u−K)F+(u)e−2ud = 0.



This equation has exactly two positive real roots λ1 and λ2. The detail analysis of the roots for dispersion relation is given in
Bhattacharjee and Sahoo [1]. For the existence of trapped modes we require φI , φII , |∇φI |, |∇φII | → 0 as |x| → ∞ and
hence we restrict l to be in the range l > λ2 > λ1, which ensures that no wave propagation to infinity takes place on the interface
or near the ice-cover.

3 Solutions by multipoles
A horizontal circular cylinder of radius a having its axis along z = f and its generator running parallel to the y-axis is placed in a
two-layer fluid. If f > 0, the cylinder is in the upper fluid, whereas for f < 0 the cylinder is in the lower fluid. Polar coordinates
(r, θ) are defined in the (x, z)- plane centered on (0, f) as x = r sin θ and z = f − r cos θ.

3.1 Cylinder submerged in the upper layer
Symmetric multipoles in the upper layer are defined by
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where
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Here Kn(.) are modified Bessel functions of the second kind of order n and the integrals are Cauchy Principal Value integrals.
Kn(lr) cos nθ has the integral representation as given in [6]. The total velocity potential can now be written as [5]
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where In(.) are modified Bessel functions of the first kind of order n and
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We note that since v > l, there will be no singularities of the integrand on the real axis. Applying the body boundary
condition, ∂φ

∂r = 0 on r = a, we obtain an infinite system of linear equations in the unknowns αm, which is
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For a fixed geometrical configuration, the problem of finding the trapped mode frequencies is completely specified by the
two non-dimensional parameters Ka and la: one of the parameters may be fixed and the other varied until the value of the
determinant becomes approximately zero. Then using that specific value of Ka in the dispersion relation we get the values of
two wavenumbers λ1a and λ2a.

3.2 Cylinder submerged in the lower layer
We now consider the problem with the cylinder positioned in the lower fluid layer. The multipoles singular at z = f(< 0) are
required to be modified. This can be done in the same way as was done previously for the case of cylinder in the upper layer
f > 0. The symmetric multipoles in the lower layer are
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where G(v) is same as in Eq. (3.1).
Once again, the integrand has no singularities on the real axis. By applying the body boundary condition, ∂φ

∂r = 0 on r = a,
we obtain the same type of system of equations like (3.2). Here also, as in the previous case, by fixing the other parameters and
varying the frequencies Ka, we conveniently locate the zeros of the truncated determinant. It is already known that the values of
those frequencies correspond to the trapped modes.

4 Numerical results
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Figure 1: Trapped mode wavenumbers against ρ for a cylinder of radius a in the upper fluid layer for different submergence
depths f/a; la = 2, d/a = 2.1, h/a = 6, D/a4 = 0.001 and ε/a = 0.001.
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Figure 2: Trapped mode wavenumbers against ρ for a cylinder of radius a in the upper fluid layer for different depths d/a of the
upper layer; la = 2, f/a = 1.01, h/a = 6, D/a4 = 0.001 and ε/a = 0.001.
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Figure 3: Trapped mode wavenumbers against ρ for a cylinder of radius a in the upper fluid layer for different ice-parameters;
la = 2, f/a = 1.01, d/a = 2.1 and h/a = 6.

For numerical evaluation of the zeros of the determinant, we truncate the systems to a 32×32 system and the result presented
here are obtained correct up to three decimal places. When the cylinder is placed in the upper layer, for each value of submergence
depth there are at least two curves for each of the wavenumbers λ1a and λ2a ( figure 1). For both the wavenumbers, with increase
in density ratio, the first and second modes come very close to each other at near crossing points, after which the second modes
terminate and each of the first modes decreases to some fixed value for corresponding submergence depth. For each submergence
depth, these near crossing points have also been observed in [5] but the positions of these points get shifted downwards due to



the presence of ice-cover. We have seen in [5] that third modes exist when the cylinder is nearer to the free surface but when the
free surface gets replaced by a thin ice-cover then a third mode exists when the surface of the cylinder just touches the ice-cover.
When an ice-cover replaces the free surface, the wavenumbers λ1a and λ2a of the trapped modes increase. With increase in
depth of the upper layer, these near crossing points increase to la = 2 and when depth increases further, only first mode always
exists and it will become independent of depth of the upper layer ( figure 2). We have also plotted the trapped mode wavenumbers
λ1a and λ2a against density ratio for four different sets of non-dimensionalised ice-parameters ( figure 3). It is observed that
with increase in flexural rigidity, the ice-cover behaves more like a rigid lid and for that there exists only one mode for both the
wavenumbers which is very similar to the modes found in the rigid lid problem already taken up by the authors.
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Figure 4: Trapped mode wavenumbers against ρ for a cylinder of radius a in the lower fluid layer for different depths d/a of the
upper layer; la = 2, h/a = 6, f/a = −1.01, D/a4 = 0.001 and ε/a = 0.001.
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Figure 5: Dispersion curves for a cylinder of radius a in the lower layer; ρ = 0.95, h/a = 6, D/a4 = 0.001 and ε/a = 0.001 (a)
for different depths d/a of the upper layer; f/a = −1.01 (b) for different submergence depths f/a; d/a = 3.

When the cylinder is submerged in the lower layer near the interface, la = 2, we observe that for depth d/a of the upper
layer ≥ 1, there are two curves which correspond to the two modes for each of the wavenumbers λ1a and λ2a. Otherwise, there
exists only one mode (figure 4). For the wavenumber λ1a, these two modes tend to zero as ρ → 1 for any depth of the upper
layer. For wavenumber λ2a as ρ → 1, the first mode increases marginally to a fixed value corresponding to each depth of the
upper layer and the second modes tend to la = 2. When we plot the trapped mode wavenumber λ2a against la, we observe that
with increase in depth of the upper layer, λ2a decrease, the first mode being affected more than the second mode ( figure 5(a)).
From figure 5(b) we observe that as the cylinder approaches the interface, the curves fold out from the upper bound. Now if the
cylinder is positioned in the upper layer, then also dispersion curves are found to have the same trend.
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