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Introduction

The work presented in this paper is the continuation of work previously presented at the IWWWFB by Edmund
et al. (2011). The goal of this research is to find a method that provides the solution in the entire fluid domain
of the Navier-Stokes problem, while being more computationally efficient than existing methods that require
full field discretization. To achieve this goal, we use a velocity decomposition where the total velocity vector
is expressed as the sum of an irrotational component and a vortical component. The majority of the flow in
the fluid domain is irrotational and can be expressed as the gradient of a potential field. Rotational flow will
be confined to the boundary layer near the body, the wake region downstream of the body, and the turbulent
regions associated with breaking waves. It is well known that the potential which satisfies a zero-normal flow
condition on the body (the inviscid potential) does not satisfy the real viscous flow problem even in the regions
away from the body where the flow is essentially irrotational. This is almost entirely due to viscous effects near
the body. Therefore, we seek a formulation for the viscous potential which incorporates the effects of viscosity
in a general manner.

The work in Edmund (2012) applied velocity decomposition to the steady, non-lifting flow over deeply-
submerged bodies at a wide range of Reynolds numbers. The ultimate goal of the current research is to apply
our approach to free-surface problems. The flow over a body under a free surface is almost always asymmetrical
which presents challenges for our approach. To address these issues we began by investigating the steady flow
over a 2-dimensional, deeply-submerged NACA0012 airfoil which also has an asymmetrical velocity field
around the body and in the wake. It is expected that the results presented at the Workshop will include a free
surface, and a comparison to Duncan’s experiments (1983) will be made.

Velocity Decomposition

We seek a velocity decomposition that provides a potential field which satisfies the real fluid problem in the
region of space where the total velocity has no rotation. To arrive at a formulation for the viscous potential, we
start with the decomposition of the total velocity vector, u, as the sum of the gradient of the viscous potential,
∇ϕ , and a vortical component, w.

u = ∇ϕ +w (1)

If a viscous potential is found that delivers a vortical velocity field which vanishes with the vorticity vector, then
the total velocity can be described completely by the gradient of the viscous potential outside of the vortical
regions.

u = ∇ϕ (2)

This opens the possibility to solve the governing equations for the viscous flow (Navier-Stokes, Reynolds-
averaged Navier-Stokes, etc.) on a reduced fluid domain and to use the gradient of the viscous potential as a
Dirichlet condition on the outer boundary of this reduced discretization. With this approach, the reduced fluid
domain only needs to contain the regions where the vortical velocity is non-zero.

As mentioned in the introduction, the viscous potential, ϕ , is different from the inviscid potential, φ . The
inviscid potential satisfies the kinematic condition of zero normal flow on the body, while the viscous potential
will satisfy a modified Neumann boundary condition that is not necessarily zero on the body. To derive this
condition we start with the no-slip body boundary condition that the total velocity vector must satisfy.

u = 0 = w+∇ϕ on the body (3)

or

∇ϕ =−w on the body (4)



Dotting both sides with the body normal vector we obtain:
∂ϕ

∂n
=−w ·n =−wn on the body (5)

Following Morino (1986), we use the principle of conservation of mass to obtain an expression for the
rotational contribution to the body boundary condition for the viscous potential. The divergence operator and
the vortical velocity are expressed in a local coordinate system consisting of a normal vector n and two in-plane
tangent vectors, t1 and t2. If the total velocity is solenoidal and the viscous potential satisfies the Laplace
equation then the divergence of the vortical velocity must be zero:

∇ ·u = ∇ ·w+∇
2
ϕ︸︷︷︸

=0

= ∇ ·w =
∂wn

∂n
+

∂wt1

∂ t1
+

∂wt2

∂ t2
= 0 (6)

This equation is then integrated in the normal direction out to a distance δ .

wn(0) =
∫

δ

0

[
∂wt1

∂ t1
+

∂wt2

∂ t2

]
dn+wn(δ ) (7)

The result is the expression for the normal component of the vortical velocity on the body surface. Combining
Equations 5 and 7 results in the body boundary condition for the viscous potential.

∂ϕ

∂n
=−
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δ

0
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∂ t
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]
dn−wn(δ ) on the body (8)

We seek a decomposition in which the vortical velocity vanishes with the vorticity as one moves away
from the body (in a normal direction). This means that for a distance δ that lies far enough away from the
body such that the vorticity is negligible, the decomposition will provide a vortical velocity which is zero at δ .
Consequently, Equation 9 gives the body boundary condition for the viscous potential.

∂ϕ
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∫
δ
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∂ t
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∂ t2

]
dn on the body (9)

We use Equation 2 to specify the Dirichlet condition for the viscous flow on the inlet and lateral (far-field)
boundaries of a reduced computational domain. However, from Equation 9 it is apparent that knowledge of
the vortical velocity is required in order to calculate the body boundary condition. We approach this with an
iterative strategy. The inviscid potential is initially used to set the Dirichlet condition for the viscous flow. Then
the solver iterates between the viscous flow solver and the potential solver until a converged solution is reached.
The vortical velocity at δ , wn(δ ), in Equation 8 is initially non-zero but is driven to zero as a consequence of
the iterative scheme.

The vortical velocity evolves in the wake downstream of the body. A source distribution downstream of
the body is used in order to include the effects of the vortical wake. The source distribution in the wake also
satisfies Equation 9.

Potential Flow Solver

We solve the viscous potential problem using a boundary element method satisfying the body boundary con-
dition for the viscous potential given in Equation 9 as well as the far-field radiation condition. We use a
combination of flat, 2-dimensional source and vortex panels. The vortex panels have a linearly varying strength
while the source panels have constant strength. The Kutta condition is met by requiring the vortex strength
at the trailing edge to be zero. In the usual manner, a system of linear equations is developed to solve for the
unknown vortex strengths by collocating at the center of each panel and satisfying the inviscid zero normal
flow velocity condition. Similarly, the unknown source strengths are determined by forming a separate system
of linear equations by collocating at the center of each panel and satisfying the body boundary condition for
the viscous potential from Equation 9. The systems are directly solved using LAPACK, an open-source linear
algebra package.

The lifting problem introduces a new challenge that we have not encountered before. In previous work we
have only dealt with non-lifting bodies where the body is symmetric with respect to the onset flow which results
in a symmetric flow around the body as well as a symmetric wake downstream. We include the vortical effects
of the symmetric wake by placing a source distribution from the trailing edge to the end of the computational



domain. However, in a lifting problem the vortical wake is not symmetric and we must adjust our model to
include this asymmetry. To do this we use two source distributions separated by a small distance, usually less
than 1% of the chordlength which is illustrated in Figure 1. The boundary condition for the upper wake source
distribution integrates the vortical velocity in the positive vertical direction while the boundary condition for
the lower wake source distribution integrates the vortical velocity in the opposite direction. The non-physical
source distributions in the wake region cause no difficulty because the velocities due to the viscous potential
are only evaluated outside of the rotational region of the flow.

Viscous Flow Solver

The viscous fluid equations are solved using OpenFOAM, a finite-volume, open-source CFD package. The
steady fluid equations are solved using the SIMPLE algorithm. The Spalart-Allmaras turbulence model with
wall functions is used when needed. It is also important to mention that the potential flow panel method uses
the same discretization of the body as the viscous flow solver.

Results

Results are computed for a deeply-submerged NACA0012 airfoil at 0−7◦ angles of attack. Since a comparison
with Duncan’s experiments (1983) is the ultimate goal, we use a Reynolds number of 160,000 and a chordlength
of 0.202 m. The velocity decomposition result is computed on a reduced size grid which has inlet and lateral
(far-field) boundaries at 5 chordlengths from the body with 27k cells. For comparison, a conventional RANS
result is computed on a grid with boundaries located at 100 chordlengths with 44k cells. To be consistent the
two domains share the same geometry in overlapping regions and both have downstream boundaries located 250
chordlengths downstream. The surface of the airfoil is discretized into 100 flat panels. Velocity profiles at the
quarter-chord, mid-chord, trailing edge and one chordlength downstream are shown in Figures 3 and Figures 4
for angles of attack of 3◦ and 7◦, respectively. The velocity decomposition result has excellent agreement
with the RANS calculation on the large domain. Figure 2 shows the lift coefficient calculated from the RANS
result across a range of angles of attack. Experimental values from Jacobs and Sherman (1937) are included
in Figure 2 for a slightly higher Reynolds number of 170,000. Again, the agreement between the large domain
result and the velocity decomposition is very good, within 0.25%

Conclusion

Our velocity decomposition approach has been successfully applied to solve for the real viscous flow over a
deeply submerged NACA0012 airfoil. The next step is to include free-surface effects. We expect to present
results for the free-surface flow over a NACA0012 airfoil at the Workshop.

Acknowledgements

The authors would like to gratefully acknowledge the support of grants from the US Office of Naval Research,
Award #N00014-10-1-0301 under the technical direction of Ms. Kelly Cooper, as well as Awards #N00014-
11-1-0484 and #N00014-09-1-0978 under the technical direction of Dr. L. Patrick Purtell.

Bibliography

Duncan, J. The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. Journal of Fluid
Mechanics, 126:507–520, 1983.

Edmund, D. O., Maki, K. J., and Beck, R. F. An improved viscous / inviscid velocity decomposition method.
In International Workshop on Water Waves and Floating Bodies (IWWWFB), volume 26, 2011.

Edmund, D. A Velocity Decomposition Method for Efficient Numerical Computation of Steady External Flows.
PhD thesis, University of Michigan, 2012.

Jacobs, E. N. and Sherman, A. Airfoil section characteristics as affected by variations of the Reynolds number.
Technical Report 586, National Advisory Committee for Aeronautics, 1937.

Morino, L. Helmholtz decomposition revisited: vorticity generation and trailing edge condition. Computational
Mechanics, 1(1):65–90, 1986.



 0

 0.9  1  1.1  1.2

z
 /

 c

x / c 

Figure 1: This figure shows the trailing edge re-
gion in order to describe the two wake surfaces.
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Figure 2: Lift coefficient vs. angle of attack. Thin
wing theory (...), Experiments at Re = 170k by
Jacobs and Sherman (1937) (+), Velocity decom-
position (�), and Large domain RANS (◦).
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Figure 3: Velocity profiles calculated for a NACA0012 airfoil at 3◦ angle of attack computed using velocity
decomposition, compared to the large domain (RANS) result.
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Figure 4: Velocity profiles calculated for a NACA0012 airfoil at 7◦ angle of attack computed using velocity
decomposition, compared to the large domain (RANS) result.


