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Abstract

This Abstract is dedicated to the memory of Professor Fritz Ursell whose influence continues to
be reflected in contributions to the Workshop.

Fritz Ursell’s first published paper in 1947 was on the scattering of an incident wave by a thin
vertical barrier, aspects of which coincidentally also formed the basis of the first paper published
by each of us, one or two generations later. This 1947 paper was remarkable in providing one
of the few explicit solutions in linear water-wave theory, namely the potential everywhere in the
fluid when an incident two-dimensional wave-train in deep water is scattered by a thin vertical rigid
barrier immersed to a depth a. He also presented the solution to the complementary problem solved
earlier by Dean (1945) who used complex function theory, in which the vertical barrier extends from
infinity in the depths of the fluid to a point a distance a beneath the free surface.

In this paper we show that these distinct solutions and corresponding reflection coefficients can
be related through two entirely new potentials which, given one of the above solutions enables the
other to be determined. The results are a special case of a more general theory which can include
finite depth, oblique incidence and different geometric configurations (Porter & Evans (2013, in
preparation)).

1 The role of the new connection potentials

Cartesian coordinates are defined with the origin in the mean free surface and y pointing vertically
downwards into the infinite depth fluid. A thin barrier occupies the interval y ∈ B of the plane x = 0
and the gap in the barrier occupies the interval y ∈ G. In the Ursell and Dean problems B is the
interval (0, a) and (a,∞) and G the interval (a,∞) and (0, a) respectively.

A plane two-dimensional monochromatic wave of radian frequency ω is incident from x > 0 on
the barriers. Under the usual assumptions of linearised wave theory there exists a velocity potential
ℜ{Φ(x, y)e−iωt} This complex-valued potential Φ(x, y) satisfies the equations

Φxx + Φyy = 0, y > 0, (1)

with
KΦ + Φy = 0, on y = 0 (2)

and K = ω2/g where g is gravitational acceleration and

∇Φ → 0 y → ∞. (3)

We must also impose no-flow conditions on the barrier

Φx(0±, y) = 0, y ∈ B (4)

and specify a radiation condition. We assume a wave incident from x = ∞ so that

Φ(x, y) ∼

{
e−iKx−Ky +ReiKx−Ky, x→ ∞
T e−iKx−Ky, x→ −∞

(5)

where R and T are the reflection and transmission coefficients. It can easily be shown that

Φ(x, y) =

{
e−iKx−Ky + eiKx−Ky + φ(x, y), x > 0
−φ(−x, y), x < 0

(6)



where φ(x, y) is defined in x > 0 and satisfies (1), (2) and (3) in addition to the boundary conditions

φx(0, y) = 0, y ∈ B, φ(0, y) + e−Ky = 0, y ∈ G (7)

which results from imposing (4) on Φ and continuity of Φ(x, y) across x = 0 when y ∈ G, based on
the decomposition (6). Under this definition φ(x, y) ∼ (R − 1)eiKx−Ky as x → ∞ with T = R − 1.
With r a local measure of the distance from any barrier edge immersed in the fluid, we also require
|∇φ| ∼ r−1/2 as r → 0.

We label the Ursell and Dean potentials in (6) by φu(x, y) and φd(x, y) respectively, satisfying

φ
u/d
x (0, y) = 0, y ∈ (0, a)/(a,∞), φu/d(0, y) + e−Ky = 0, y ∈ (a,∞)/(0, a)

φu/d(x, y) ∼ (Ru/d − 1)eiKx−Ky as x→ ∞ (8)

Thus, from Ursell (1947) we have

φu(x, y) + eiKx−Ky = C

(
πI1(Ka)e

iKx−Ky +

∫
∞

0

L(k, y)J1(ka)e
−kx

(k2 +K2)
dk

)
(9)

where C = (πI1(Ka) + iK1(Ka))
−1 and Ru = πI1(Ka)C, and

φd(x, y) + eiKx−Ky = B

(
K0(Ka)e

iKx−Ky −

∫
∞

0

L(k, y)J0(ka)e
−kx

(k2 +K2)
dk

)
(10)

where B = (K0(Ka) + iπI0(Ka))
−1 and Rd = K0(Ka)B. The above expressions involve Bessel

functions whilst L(k, y) = k cos ky −K sin ky.
We now connect these potentials through the introduction of new potentials ψu/d(x, y). Thus let

φu/d(x, y) + eiKx−Ky = iK−1

(
φd/u

x (x, y) +Ad/uψd/u
x (x, y)

)
. (11)

Then from (8) we require

ψu/d
x (0, y) = 0, y ∈ (0, a)/(a,∞), ψu/d

yy (0, y) = 0, y ∈ (a,∞)/(0, a) (12)

where the second condition arises from differentiating (11) with respect to x, using the Laplacian, and

finally noting the relation φ
u/d
yy (0, y) = −K2e−Ky for y ∈ (a,∞)/(0, a) from (8). We also assume

ψu/d(x, y) ∼ R̃u/deiKx−Ky, x→ ∞ (13)

where R̃u/d ∈ C is to be determined.
The constant Ad/u is to be determined from the condition

lim
r→0

r1/2

(
φd/u

x (x, y) +Ad/uψd/u
x (x, y)

)
= 0, where r = (x2 + (y − a)2)1/2 (14)

since φu/d is bounded near r = 0.
The second condition in (12) may be integrated to give

ψd(0, y) = 1 −Ky, y ∈ (0, a), and ψu(0, y) = 1, y ∈ (a,∞) (15)

to ensure that (2) is satisfied by ψd(x, y) and (3) by ψu(x, y).
Thus, we have shown in (11) that φu/d can be expressed in terms of the sum of the x-derivative of

φd/u and a ‘connection’ potential ψd/u(x, y) satisfying the same Neumann condition as φd/u(x, y) on
the barrier but with different Dirichlet conditions described by (15). Using the far-field asymptotic
form designated to each term in (11) and letting x→ ∞ gives

Ru/d = 1 −Rd/u −Ad/uR̃d/u. (16)



2 Derivation of the connection potential ψd(x, y).

As an illustration of the theory we shall derive the connection potential ψd(x, y) from first principles
and confirm that together with knowledge of the Dean potential and corresponding reflection coefficient
it can be used through (11) and (16) to derive the Ursell potential and its reflection coefficient.

The most general potential satisfying (1), (2), (3) and (13) is written

ψd(x, y) = R̃deiKx−Ky +
2

π

∫
∞

0

A(k)L(k, y)e−kx

k(k2 +K2)
dk, (17)

where R̃d and A(k) are unknowns. We define

Ud(y) ≡ ψd
x(0, y) = iKR̃de−Ky −

2

π

∫
∞

0

A(k)L(k, y)

(k2 +K2)
dk (18)

which is zero when y > a on account of (12). Using Havelock’s (1929) inversion theorem

R̃d = −2i

∫ a

0

Ud(y)e−Kydy, and A(k) = −

∫ a

0

Ud(y)L(k, y)dy (19)

where use has been made of Ud(y) = 0 for y > a to restrict the integration interval to (0, a). It follows
from substition of A(k) from (19) into (17) and the imposition of (15) that

∫ a

0

Ud(t)K(y, t)dt = f(y), y ∈ (0, a) where K(y, t) =

∫
∞

0

L(k, t)L(k, y)

k(k2 +K2)
dk. (20)

and with f(y) = 1

2
π(R̃de−Ky + Ky − 1). Ursell (1947) shows how this integral equation may be

transformed after application of the differential operator K + ∂/∂y to become

∫ a

0

V d(t)

y2 − t2
dt = −

(
f ′(y) +Kf(y)

)
/y, y ∈ (0, a) where V d(y) = Ud(y)+K

∫ y

a
Ud(t)dt. (21)

Notice that V d(y) has the same singular behaviour as Ud(y) near y = a such that limy→a(U
d(y) −

V d(y)) = 0 and is bounded near y = 0.
For the particular f(y) in this case −(f ′(y) +Kf(y))/y = −1

2
πK2 so that V d(y) satisfies

∫ a

0

V d(t)

y2 − t2
dt = −1

2
πK2, y ∈ (0, a). (22)

There is a general formula for the inversion of integral equations of the type above with arbitrary
right-hand sides and application of this for the particular right-hand side above gives

V d(t) =
D

(a2 − t2)1/2
−K2(a2 − t2)1/2 (23)

where D is a constant to be determined, whose origins can be traced back to transformation of the
original integral equation (20) into (21). Thus, we substitute (23) back into (20) to determine D.

First we make use of an integral identity between Ud(t) and V d(t), which is easily established from
(21) and integration by parts, to obtain

∫ a

0

L(k, t)Ud(t)dt = k

∫ a

0

V d(t) cos ktdt = 1

2
π

(
kDJ0(ka) −K2aJ1(ka)

)
(24)

after using (23) and standard integral identities

∫ a

0

cos(ky)

(a2 − y2)1/2
dy = −πJ0(ka)/2 and

∫ a

0

(a2 − y2)1/2 cos(ky)dy = πaJ1(ka)/2k. (25)



It follows from using (24) in (20) that

R̃de−Ky +Ky − 1 = D

∫
∞

0

J0(ka)L(k, y)

(k2 +K2)
dk −K2a

∫
∞

0

J1(ka)L(k, y)

k(k2 +K2)
dk, y ∈ (0, a). (26)

With some effort, further integral relations can be established, in particular
∫

∞

0

J0(ka)L(k, y)

(k2 +K2)
dk = e−KyK0(Ka),

∫
∞

0

J1(ka)L(k, y)

k(k2 +K2)
dk =

(1 −Ky)

K2a
−
K1(Ka)e

−Ky

K
. (27)

Substituting these into (26) we find that the terms 1−Ky on each side of the equation cancel to leave

R̃d = DK0(Ka) +KaK1(Ka) (28)

which determines D (in terms of R̃d). A relation for R̃d follows from the first equation in (19) which
can be written using the relation between Ud and V d in (21) and integration by parts as

R̃d = −2i

∫ a

0

Ud(y)e−Kydy = −2i

∫ a

0

cosh(Ky)V d(y)dy = −iπ (DI0(Ka) −KaI1(Ka)) (29)

after susbtitution of (23) and using the results (25) with k replaced by iK.
Equations (28) and (29) may be combined to give

R̃d = iπB (I0K1 + I1K0)Ka, D = iBC−1Ka, where B−1 = K0 + iπI0, C−1 = πI1 + iK1 (30)

are defined in (9) and (10) and where the argument of the Bessel functions is Ka throughout. We are
nearly in a position to determine Ru from (16) but first need to determine Ad from (14). We have
that Rd = BK0(Ka) and it can also be shown, en route to the derivation of the Dean potential, that
φd

x(0, y) ∼ B/(a2 − y2)1/2. It follows from the comments after (21) and from (23) that we require
AdD +B = 0 and so (16) becomes

Ru = 1 −Rd +BD−1R̃d = B(iπI0 +D−1R̃d) = Bπ (iI0 + C(I0K1 + I1K0)) = πI1(Ka)C (31)

using (30), which is the Ursell result.
To derive the Ursell potential from (11) we first use (10) and (17), (19) and (24) to show that

φd(x, y)+Adψd(x, y) = −eiKx−Ky +
(
BK0(Ka) +AdR̃d

)
eiKx−Ky +K2aAd

∫
∞

0

L(k, y)J1(ka)e
−kx

k(k2 +K2)
dk

where the resulting integral involving J0(ka) vanishes since B +AdD = 0. Also it can be shown that
BK0(Ka) +AdR̃d = iCK1(Ka) so that from (11)

φu(x, y) + eiKx−Ky = iK−1
∂

∂x

(
φd(x, y) +Adψd(x, y)

)

= eiKx−Ky − iCK1(Ka)e
iKx−Ky − iKaAd

∫
∞

0

L(k, y)J1(ka)e
−kx

(k2 +K2)
dk

= C

(
πI1(Ka)e

iKx−Ky +

∫
∞

0

L(k, y)J1(ka)e
−kx

(k2 +K2)
dk

)
(32)

since −iKaAd = C. This is precisely the Ursell potential given by (9). We could equally have derived
the connection potential ψu(x, y) and used it in conjunction with the Ursell potential to derive the
Dean potential.

The connection potentials described here are of academic interest only in the present context as
both the Ursell and Dean solutions are well-known. However it may transpire in more complicated
problems that one of the problems is more difficult than the other in which case the connection
potentials would provide the link between them.
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