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INTRODUCTION 
The problem of waves propagating over a 
submerged obstacle has been widely investigated 
during the past decades. Higher bound and free 
harmonic waves are generated in the process of 
wave transformation above the submerged obstacle. 
As the important issues, the physics of harmonics 
generation and the nonlinear interaction among 
these harmonics were studied by many researchers, 
such as Grue (1992), Brossard and Chagdali (2001), 
Liu et al. (2009), Teng et al.(2010) and Ning et al. 
(2012). Actually, waves and currents generally 
coexist and their interactions play important roles 
in most of the ocean dynamic processes. Although 
numerous works on wave-current interactions, such 
as Thomas (1981), Zaman et al.(2008) and Yoon & 
Liu(1989), have been conducted, the analysis of 
current effects on the higher harmonics scattering 
by a submerged body is still relatively scarce.  
In this abstract, the monochromatic wave over a 
submerged obstacle in the presence of uniform 
current is investigated using a  fully nonlinear 
numerical scheme based on a 2D boundary element 
method (BEM). The phase-locked and free higher 
harmonic modes downstream the structure are 
decomposed by means of a two-point method, and 
their characteristics under the influence of current 
are further studied.  
 
NUMERICAL MODEL  
For wave overtopping a submerged obstacle in the 
presence of a uniform current as shown in Fig. 1, a 
2D Cartesian coordinate system oxz is defined with 
the origin o in the plane of the undisturbed free 
surface, x=0 is at the left end of the domain, z is 
positive upwards. Fluid is assumed to be ideal, so 
that the potential flow theory can be used inside the 
fluid domain Ω. Due to the presence of uniform 
current U0, the total velocity potential can be 
described to consist of component related to the 

current xU0 and the rest part of potential φ(x, z, t). 
Both the total velocity potential and φ satisfy the 
Laplace equation.  

  
Fig.1 Sketch of the problem 

On the instantaneous free surface, both the fully 
nonlinear kinematic and dynamic boundary 
conditions are satisfied and the mixed 
Eulerian-Lagrangian method is used to advance the 
time marching. On the bottom boundary, the rigid 
and impermeable condition is imposed. On the 
inflow boundary SI, the fluid motion is generated 
by prescribing the second-order Stokes wave 
velocity. Due to the current effect, the input 
velocity potential can be written as follows 
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where ω is angular frequency, h is the static water 
depth, Ae is a parameter related to the wave 
amplitude in the presence of current. Based on the 
conservation of wave action (Bretherton & 
Garrett ,1968), it satisfies the following relation 
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in which A0 and Cg0 mean the wave amplitude and 
wave group velocity in quiescent water. 
Towards the end of the computational domain, an 
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artificial damping beach is applied on the free 
surface so that the wave energy is gradually 
dissipated in the direction of wave propagation 
(Ning et al., 2009).  
By using the second Green’s theorem, the 
prescribed boundary value problem can be 
transformed to the following boundary integral 
equation:  
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where p and q are source and field points, and C is 
the solid angle which can be conveniently and 
economically computed by an indirect method in 
the present study. Γ is liquid domain boundary 
including free surface boundary and solid boundary. 
G is a simple Green function written as follows: 
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where 2 2
1 0 0( ) ( )r x x z z= − + − , 

2 2
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Then the boundary surface is discretized with a 
number of three-node line elements. The geometry 
of each element is represented by the quadratic 
shape functions, thus the entire curved boundary 
can be approximated by a number of higher-order 
elements. Within the boundary elements, physical 
variables are also interpolated by the same shape 
functions, i.e. the elements are isoparametric. 
Since the discretized integral equation is always 
variant in time, all the boundary surfaces are 
regridded and updated at each time step using the 
mixed Eulerian-Lagrangian scheme and 4th-order 
Runga-Kutta approach. Once the Eq. (3) is solved, 
we can obtain the time series of surface elevation at 
any position. 
When wave-current pass the submerged obstacle, 
higher harmonics generated by nonlinear wave- 
wave and wave-current interactions in the shallow 
water over the bar will leave the obstacle leeward 
as free waves. So the surface elevation at any point 
x in the lee side of the submerged body can be 
written as  
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where a(n) 
F  are the amplitudes of the free transmitted 

waves with frequencies of integer times of the 
incident wave frequency, a(n) 

L  are the amplitudes of 
the nth-order phase-locked waves, ψ1(x) is the 
initial phase angle of the fundamental wave and 
ψn(x) (n≥2) the nth harmonic free waves, k and kn 

are the wave number of the fundamental waves and 
the nth harmonic free waves, and satisfy the 
following dispersion relations 
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respectively. The fundamental wave amplitude, as 
well as the higher free and locked wave amplitudes, 
is obtained from the time histories of the surface 
elevation. The Fourier transform is introduced as 
follows 
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where An(x) and Bn(x) are the corresponding real 
and imaginary components, respectively. Then the 
two-point method (Grue, 1992, Teng et al., 2010) is 
used in the Eq.(8) and the unknowns in in Eq.(5) 
can be obtained. 
 
NUMERICAL RESULTS 
As a validation of the present model, the proposed 
numerical model is used to compute the combined 
wave-current field parameter in a domain with flat 
bottom, in which the input parameters static water 
depth h=0.6m, angular frequency ω=5.42rad/s, 
wave height H0=0.06m are considered. The length 
of the corresponding computational domain is taken 
as 10λ(λ=2π/k denotes wave length), meshed with 
200×10 cells in x and z directions after convergent 
tests, in which the last 1.5λ is used as the damping 
layer. Figs.2 and 3 show the comparisons of wave 
height and wave length in the presence of different 
current with other published numerical and 
experimental data, respectively. In the figure, the 



symbol C0 represents the current-free wave celerity. 
From the figures, it can be seen that a good match 
of the numerical results with experimental data is 
observed.  
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Fig.2 Comparisons of the wave height obtained by the 
present numerical model with Zaman et al.(2008) and 
experimental data (Zaman and Togashi, 1996). 
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 Fig.3 Comparisons of the wavelength obtained by the 
present numerical model with Zaman et al.(2008) and 
experimental data (Thomas, 1981). 
 
To testify the two-point method for separating 
higher free harmonics from scattering waves, 
another case for monochromic wave propagating a 
submerged horizontal cylinder in quiescent water is 
considered as shown in Fig.1. Parameters including 
static water depth h=0.45m, cylinder radius R=0.1m, 
submerged depth d=0.1m are chosen. Fig.4 shows 
the distribution of the dimensionless fundamental 
and second-harmonic free wave amplitudes (A(n) 

F /A0) 
with incident wave amplitude A0. The comparisons 
between the present numerical results and 
experimental data (Grue, 1992) are also given here. 
From the figure, it can be seen that there are good 
agreements between numerical solutions and 

experimental data. The fundamental wave 
amplitude is always very close to the input one A0, 
while the second-harmonic free amplitude is 
increased with the increasing of input wave 
amplitude A0, and then reaches a maximum value at 
a critical input-amplitude. 
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Fig.4 Distribution of fundamental and 2nd-order free 
harmonic wave amplitudes with amplitude A0. 
 
Keeping the same wave parameters as those in 
Fig.4(a), three currents (i.e., U0/Cg0=0, ±0.1) are 
introduced to the proposed numerical model. 
Fig.5 gives the distribution of the dimensionless 
fundamental, second- and third-harmonic free 
wave amplitudes with incident wave amplitude 
A0. It can be seen that the portion of higher free 
harmonics becomes larger on the opposing 
current than that on zero current, but vice verse 
on the following current. Due to wave-current 
interactions, the maximum value of 
dimensionless higher free harmonic amplitude is 
upstream shifted for the opposing current relative 
to that for zero current. On the contrary, it is 
downstream shifted for the following current, as 
shown in Fig.5(b).  
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Fig.5 Distribution of harmonic amplitudes with A0. 
 
Numerical experiments of the effect of current 
velocity and input angular frequency on the higher 
harmonics are also carried out. The details will be 
shown in the workshop. 
                
CONCLUSIONS 
The phenomenon of wave propagation over a 
submerged obstacle in the presence of uniform 
current is examined by a powerful numerical model. 
The  higher free harmonics are separated from the 
transmitted waves by using a two-point method. 
Good agreements of numerical results with the 

other published data are shown. The influence of 
the current on the characteristics of higher free 
harmonics are investigated. 
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