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1 Introduction

In the diffraction problem, where a fixed body
scatters the incident waves, ‘cloaking’ refers to the

condition where there is no scattering in the form
of radial outgoing waves. The possibility of cloak-

ing in the diffraction of water waves is of scientific
interest, since it is not obvious that this condition

can be achieved with a body of nonzero volume on
or near the free surface. Cloaking may also have

practical applications, such as reducing the mean
drift force.

Porter [1] and Newman [2] have considered the

possibility of cloaking a bottom-mounted circu-
lar cylinder, using an annular bed with variable
depth in both the radial and azimuthal directions.

Their computations show that near-zero values of
the scattered energy can be achieved by optimiz-

ing the bathymetry of the bed. Subsequently, in
response to a stimulating question at the last

Workshop [3], axisymmetric beds have been dis-
covered with equally small values of the scattered

energy [4]. This surprising discovery contradicts
the author’s conjecture in the reply to [3].

The use of variable bathymetry may be imprac-

tical, especially in deep water. Thus the present
work considers the possibility of cloaking a cir-
cular cylinder of finite draft in a fluid of infinite

depth. Two types of surrounding structures are
used to minimize the total scattered energy. The

first is an array of smaller cylinders which sur-
round the inner cylinder, as shown in Figure 1.

This configuration was suggested by the work of
Farhat et al [5]. The second type is an axisymmet-

ric ring (toroid) with the cross-section represented
by a Fourier series. In both cases it is shown that

the scattered energy can be reduced to very small
values by optimizing the dimensions and shape of
the surrounding bodies.

As in [2], the approach is based on minimizing

the scattered energy computed by WAMIT, using
multi-variate optimization to search for the appro-

priate values of the geometrical parameters. The
results are normalized based on unit values of the

incident-wave amplitude, fluid density, and draft
of the inner cylinder. The radius of the inner cylin-

der is 0.5 and the optimizations are performed
at the wavenumber K = 1. The scattered en-

ergy is computed from the Kochin function, which
represents the amplitude of the far-field radiating
waves, using equation 7 of [2].

Figure 1: Perspective view of the optimized struc-

ture with N = 64 outer cylinders.

2 Arrays of circular cylinders

N circular cylinders with radius r and draft d are
uniformly spaced around a circle of radiusR0, con-

centric with the inner cylinder. The entire struc-
ture is fixed on the free surface. Five different

arrays are considered with N=(4,8,16,32,64), as
shown in Figure 2. The incident waves propagate

in the direction parallel to the horizontal axis in
Figure 2. Optimum values of the parameters r,

d and R0 are computed to minimize the energy.
Table 1 shows the values of these parameters with
the corresponding minima of the scattered en-

ergy E and ratio E/E0, where E0 is the scattered
energy of the inner cylinder by itself.



Figure 2: Plan view of the arrays N=4,8,16,32,64.

Figure 3 shows the scattered energy for a range

of wavenumbers. The results for N ≥ 8 are
practically the same, with very small values at

K = 1 and substantially less energy in the range
0.7 < K < 1.2 compared to the inner cylinder

by itself. From momentum conservation it follows
that the mean drift force is small if the scattered

energy is small. This is confirmed in Figure 4.

Since E decreases as N increases, and the array

approximates an axisymmetric ring as N → ∞,
these results suggest the possibility of cloaking

with an axisymmetric structure and motivate the
alternative configuration in Section 3.

Figure 3: Scattered energy for the cylinder alone

(N = 0) and five optimized structures shown in
Figure 2.

Figure 4: Mean drift force on the cylinder and five

optimized structures.

N r d R0 E E/E0

4 0.2993 0.3434 2.2071 0.0214 0.2939

8 0.2933 0.4745 2.2031 0.0018 0.0253
16 0.1963 0.4785 2.1592 0.0014 0.0197

32 0.1309 0.4507 2.1003 0.0009 0.0125
64 0.0848 0.3606 2.0170 0.0005 0.0067

Table 1: Optimized parameters of the arrays.

3 Axisymmetric rings

In this configuration the surrounding structure is
a toroid with its cross-section defined by

R = R0+

[(N−1)/2]∑

m=1

Sm sinmψ+

[(N−2)/2]∑

m=1

Cm cosmψ,

z = −d cosψ.

Here (R, z) are cylindrical coordinates with R the
radius from the vertical z−axis, z = 0 the plane
of the free surface and z positive upward. The

parametric coordinate ψ varies between −π/2 on
the inner waterline and π/2 on the outer water-

line. The optimization parameters include R0, d,
and the Fourier coefficients Sm and Cm. In the

simplest case N = 3 only S1 is included and the
cross-section is elliptical, as shown in Figure 5.

The minimum values of the energy ratio E/E0

are shown in Figure 6 for N ≤ 16. It is evident

that ratios on the order of 10−4 represent the limit
of what can be achieved using the single-precision
code WAMIT. These values of the energy ratio

are substantially smaller than the corresponding
results in Section 2, providing numerical evidence



Figure 5: Perspective view of the cylinder and
toroid with elliptical section (N=3). One quad-

rant is omitted to show the cross-section.

for the existence of axisymmetric cloaking struc-
tures. The optimized sections are shown in Figure

7. For N ≥ 12 these are practically identical. The
coefficients for N ≤ 8 are listed in Table 2.

Figure 8 shows the mean drift force for the
structure N = 16, including the separate compo-

nents acting on the cylinder and toroid. It is inter-
esting to note that both of these components have

zero-crossings at K = 1. Thus the occurrence of
near-zero mean drift force on the complete struc-

ture is not a consequence of cancellation between
the two components. This is explained below.

If the incident-wave potential is the product of
a real function and e−ikx, the symmetric and anti-

symmetric components of the scattered potential
satisfy Neumann boundary conditions on the body

where the normal derivatives are real and imagi-
nary, respectively. If there is no scattered energy

these potentials vanish at infinity faster than a
radiated wave, and satisfy homogeneous boundary
conditions on the free surface (and bottom). It fol-

lows that they are respectively real and imaginary
throughout the fluid domain, assuming unique-

ness. Thus there is no anti-symmetric component
of the second-order mean pressure, and no drift

force acting on sub-elements of the body which

N= 3 4 5 6 7 8
R0 1.926 1.656 1.654 1.481 1.466 1.450

d 0.241 0.245 0.258 0.253 0.252 0.259
S1 0.046 0.054 0.051 0.058 0.060 0.060

C1 -0.072 -0.074 -0.053 -0.056 -0.055
S2 -0.014 -0.022 -0.024 -0.016
C2 -0.039 -0.040 -0.036

S3 0.002 -0.002
C3 0.035

Table 2: Optimized parameters for toroids N ≤ 8.

Figure 6: Energy ratio for toroids.

are symmetrical about x = 0. This explains the
results for the separate components in Figure 8.

Figure 9 shows the scattered component of the
free-surface elevation at K = 1 along radial lines

at angles θ between zero and 90 degrees from the
x-axis. Only one quadrant is shown since the real

part is symmetric about x = 0 and the imagi-
nary part is anti-symmetric. There is substantial
angular variation of the elevation in the interior

domain between the cylinder and torus. In the
exterior domain outside the torus the elevation is

relatively small, and attenuates rapidly with in-
creasing radius as expected. The real part appears

to be nearly axisymmetric. The amplitude of the
scattered elevation for the cylinder alone is shown

for comparison in the left-hand plot of Figure 9.
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Figure 7: Cross-sections of the toroids. The sections N = 14, 15, 16 are superposed.

Figure 8: Total drift force on the configuration N=16 and separate components acting on the inner

cylinder and toroid. The dashed line is the force on the inner cylinder alone (N=0). The small zoom
figure on the right shows the zero-crossings of the components at K=1.

Figure 9: Real and imaginary parts of the free-surface elevation for the configuration N=16 at K=1,
plotted vs the radius R at θ = (0, 30, 60, 90) degrees from the x-axis. The waterline radii of the bodies

are indicated by vertical dashed lines. In the left-hand plot the line N=0 is the amplitude of the
elevation for the cylinder alone, at θ=0.


