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1 Introduction

In recent decades, there is a significant study on surface wave interaction with very large floating
structures for ocean space utilization. An interesting aspect of these class of problems is to
reduce the structural response of very large floating structures (VLFS). One of the approaches
for mitigating structural response of a very large floating structure under wave action is with
the help of a submerged flexible structures (see Wang et al. (2010)). Hassan et al. (2009)
analyzed the surface wave interaction with submerged flexible plates of finite and semi-infinite
length in two-dimensional as well as the three-dimensional problem involving a circular plate
by the matching method. In the present paper, Fourier type expansion formula for the velocity
potentials and associated orthogonal mode-coupling relations are derived in water of finite
depth to deal with wave interaction with floating flexible structures in the presence of submerged
flexible structures. The expansion formula are also derived in an alternate manner using Green’s
function technique.

2 Expansion formula

Under the assumption of the linearized theory of water waves and small amplitude structural
response, the problem is considered in the two-dimensional Cartesian co-ordinate system with
x-axis being in the horizontal direction and y-axis in the vertically downward positive direction.
An infinitely extended thin elastic plate is floating at the mean free surface y = 0 in an infinitely
extended fluid and another infinitely extended submerged flexible plate is kept horizontally at
y = h in the fluid domain as in Figure 1. Assuming that the fluid is inviscid, incompressible and
irrotational and simple harmonic in time with angular frequency ω, the fluid motion is described
by the velocity potentials Φj(x, y, t) = Re{ϕj(x, y)e

−iωt} with subscript j = 1 referring to the
fluid domain bounded by the floating and submerged plate and j = 2 referring to the fluid
domain bounded by the submerged plate and bottom bed. Further, it is assumed that the
deflection of the floating and submerged plates are of the forms ζj = Re{ζj(x)e−iωt)} with
j = 1 refers to the floating plate and j = 2 refers to the submerged plate. The spatial velocity
potential ϕj(x, y, t) satisfies the Laplace equation as given by

∇2ϕj = 0, in the respective fluid domain. (2.1)

The rigid bottom boundary conditions are given by

∂ϕ2

∂y
= 0 at y = H. (2.2)

The linearized kinematic condition on the submerged plate surface at y = h as given by

∂ϕ2

∂y

∣∣∣∣
y=h+

=
∂ϕ1

∂y
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y=h−

. (2.3)



Assuming mpiω
2 << 1 (as in Schulkes et al. (1987)), the mean free surface at y = 0, ϕ1 satisfies

D1
∂5ϕ1

∂y5
−N1

∂3ϕ1

∂y3
+
∂ϕ1

∂y
+Kϕ1 = 0 on y = 0, 0 < x <∞. (2.4)

On the submerged flexible plate at y = h, ϕ1 and ϕ2 satisfy

D2
∂5ϕ2

∂y5
−N2

∂3ϕ2

∂y3
+K(ϕ2 − ϕ1) = 0, for y = h, 0 < x <∞, (2.5)

where Di = EiIi/ρg, Ni = Qi/ρg and K = ω2/g. In addition, assuming that a vertical
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Figure 1: Schematic diagram of floating and submerged flexible plates in water of finite depth

wavemaker oscillates with frequency ω and amplitude u(y) about its mean position on the
wavemaker at x = 0, the spatial velocity potential ϕ satisfies

∂ϕ

∂x
= u(y) on x = 0, (2.6)

for 0 < y < H except at y = h. Finally, the far field radiation condition is of the form given by

ϕ(x, y) =
II∑
n=I

Bngn(y)e
ipnx as x→ ∞, (2.7)

where pns are the progressive flexural gravity wave modes generated due to the interaction of
the surface gravity waves with the floating and the submerged flexible plates, gn(y) are the
vertical eigenfunctions and Bn are associated with the unknown wave amplitude at far field.

2.1 Fourier type expansion formula

Using eigenfunction expansion method, the velocity potential ϕ(x, y) satisfying Eq.(2.1) along
with the boundary conditions in Eqs.(2.2)-(2.5) in finite water depth is of the form

ϕ(x, y) =
∞∑

n=I,...,X,1

Bnψn(y)e
ipnx, for x > 0, (2.8)

with ψn(y) =

 {(D2p
4
n −N2p

2
n)pn tanh pn(H − h)−K}L1(ipn, y)

L1(ipn, h)
, for 0 < y < h,

−K cosh pn(H − y)/ cosh pn(H − h), for h < y < H,
(2.9)

andBns are the unknowns to be determined with L1(ipn, y) = iK{pn(D1p
4
n−N1p

2
n+1) cosh pny−

K sinh pny}. The eigenvalues pn, n = I, II, ..., IX,X in Eq.(2.8) in p satisfy the dispersion
relation

G(p) ≡ K − p(1 +D1p
4 −N1p

2)

µ
= 0, (2.10)
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with µ =
K{1 + coth ph coth p(H − h)} − (D2p

4 −N2p
2)p coth ph

K{coth ph+ coth p(H − h)} − p(D2p4 −N2p2)
. Keeping the realistic na-

ture of the physical problem, it is assumed that the dispersion relation in Eq.(2.10) has two
distinct positive real roots pn, n = I, II, eight complex roots pn, n = III, ..., X of the form
a ± ib and −c ± id and infinite number of purely imaginary roots pn, n = 1, 2, ... of the form
pn = iνn (which can be easily observed for specific problems through contour plots). The
bounded characteristics of the far field behavior of the velocity potential in Eq.(2.7) yields
BV II = ... = BX = 0 in Eq.(2.8). Further, it can be easily derived that the eigenfunctions ψns
satisfy the orthogonal mode-coupling relation given by

⟨ψm, ψn⟩ = ⟨ψm, ψn⟩1 + ⟨ψm, ψn⟩2 = Enδmn for all m = n = I, ..., V I, 1, 2, ...

with ⟨ψm, ψn⟩1 =
∫ h

0
Fm(y)Fn(y)dy −

N1

K
ψ

′

m(0)ψ
′

n(0) +
D1

K
{ψ′

m(0)ψ
′′′

n (0) + ψ
′′′

m(0)ψ
′

n(0)},

⟨ψm, ψn⟩2 =
∫ H

h
ψm(y)ψn(y)dy −

N2

K
ψ

′

m(h)ψ
′

n(h) +
D2

K
{ψ′

m(h)ψ
′′′

n (h) + ψ
′′′

m(h)ψ
′

n(h)},

En =
−D(ipn, h) sinh pnh[ψ

′
n(0)]

2G ′(pn)

2K2p2n
,

where D(ipn, h) = −{pn(D1p
4
n−N1p

2
n+1) sinh pnh−K cosh pnh}. The constants Bns are given

by

Bn =
⟨u(y), ψn(y)⟩

ipnEn

. (2.11)

Next, one of the important characteristics of the eigenfunctions ψn(y)s is mentioned without
proof as a Theorem next.
Theorem. The eigenfunctions ψn(y)s in Eq.(2.9) are linearly dependent.
Proceeding in a similar manner as in Mondal and Sahoo (2012), the above theorem can be
proved and details are deferred here.

2.2 Derivation of line source potentials

The symmetric wave source potential associated with surface gravity wave problemsG(x, y;x0, y0)
(which is also referred as the Green’s function) in the presence of floating and submerged elastic
plates satisfies Laplace equation in the fluid region except at the structural boundaries and at
the source point (x0, y0) along with the boundary conditions as in Eqs.(2.2)-(2.5). Near the
source point (x0, y0), the Green’s function behaves like

G ∼ 1

2π
ln(r) as r =

√
(x− x0)2 + (y − y0)2 → 0. (2.12)

Assuming the symmetric property of the fundamental wave source potential about x = x0,
condition (2.12) yields (as in Mohapatra et al. (2011))

∂G

∂x
= δ(y − y0)/2 on x = x0. (2.13)

Using the generalized identity∫ ∞

0
δ(y − y0)F (y)dy =

{
F (y0) if y0 > 0,
F (y0)/2 if y0 = 0,

(2.14)

and the expansion formula as in the previous Section, the source potential G(x, y;x0, y0) is
obtained as

G(x, y; x0, y0) =
V I∑
n=I

Bnψn(y)e
ipn(x−x0) +

∞∑
n=1

Bnψn(y)e
−νn(x−x0) for x > x0, (2.15)
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where Bns are given by

Bn =



−δ1 sinh pn(H − h)L1(ipn; y0)

2pnEnKD(ipn, h)
for 0 ≤ y0 < h,

− sinh pn(H − h)L1(ipn;h)

2pnEn

− i cosh pn(H − h)

2pnEn

for y0 = h,

−iδ1 cosh pn(H − y0)

2pnEn

for h < y0 ≤ H,

and pn = iνn for n = 1, 2, 3, ... with δ1 = 1 for y0 ∈ (0, h) ∪ (h,H) and δ1 = 1/2 for y0 = 0, H
and pn, νn, ψn(y), L1(ipn; y0), Ens, D(ipn, h) being the same as in previous Section.

2.3 Expansion formula based on Green’s function technique

In this subsection, using the source potential G(x, y, x0, y0) derived in the previous subsection
and Green’s identity, the expansion formula for the flexural gravity wavemaker problem in the
presence of a horizontal flexible plate is derived. In this case, the spatial velocity potential
ϕ(x, y) satisfies the Laplace equation as in Eq.(2.1), along with the bottom boundary condition
as in Eqs.(2.2), the boundary conditions on the floating and submerged flexible plates as in
Eqs.(2.4) and (2.5). In order to derive an integral representation of the velocity potential in
terms of the Green’s function G(x, y;x0, y0) satisfying the condition on the wavemaker as in
Eq. (2.6), set

Gmod(x, y; x0, y0) = G(x, y; x0, y0) +G(−x, y; x0, y0), (2.16)

with zero normal velocity on the wavemaker, i.e., Gmod
x (0, y; x0, y0) = 0. Using Green’s identity,

the velocity potential ϕ(x0, y0) is obtained as

ϕ(x0, y0) = −
[
2
∫
ℜ
G(0, y; x0, y0)u(y)dy +

2

K

[
D1{G1yyyϕ1xy +G1yϕ1xyyy} −N1G1yϕ1xy

]
(x,y)=(0,0)

+
2

K

[
D2{G2yyyϕ2xy +G2yϕ2xyyy} −N2G2yϕ2xy

]
(x,y)=(0,h)

]
. (2.17)

The Green’s function and velocity potential derived here can be used to deal with gravity wave
interaction with floating structure in the presence of submerged flexible structure of various
configurations in finite water depth. Expansion formulae for the same class of problems can
be derived in case of infinite water depth with suitable utilisation of mixed type of Fourier
transform as in Mondal and Sahoo (2012) and alternately using Green’s function technique as
discussed in case of finite water depth.
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