
Time dependent flexural gravity wavemaker problem
S. K. Mohanty, R. Mondal, T. Sahoo

Department of Ocean Engineering and Naval Architecture
Indian Institute of Technology, Kharagpur -721 302, India

sanjaymath@gmail.com, ramju08@yahoo.com, tsahoo1967@yahoo.com

1. Introduction
Currents with speeds exceeding 1m/s are observed in the near shore regions in many parts of the world
and the mutual interaction between waves and the underlying currents alter the wave characteristics
significantly. There is negligible progress in the literature to deal with wave structure interaction
problems in the presence of current in time domain. Meylan et al. (2004) studied the wave interac-
tion with a finite floating elastic plate in time domain using Laplace transform and Green’s function
technique. In the present paper, a class of initial boundary value problems associated with the time
dependent flexural gravity wave maker problems are handled using Laplace transform method and
Green’s function technique in both the cases of finite and infinite water depths.

2. Mathematical formulation
In the present paper, the time dependent flexural gravity wavemaker problems are analyzed in two-
dimensional cartesian co-ordinate system in both the cases of finite and infinite water depths assuming
that a thin elastic plate of thickness d and density ρiis floating on the free surface of water. Assuming
that the fluid is inviscid, incompressible of constant density ρ occupies the region 0 < x < ∞, 0 < y < h
in case of finite depth, (0 < y < ∞ in case of infinite depth). Further, it is assumed that the fluid
motion is irrotational and there is a uniform current flowing with speed U along the direction of wave
propagation. Thus, the total velocity potential ⊕(x, y, t) is written as ⊕(x, y, t) = Ux+Φ(x, y, t) and
the plate deflection is denoted as η(x, t). Thus, the velocity potential Φ(x, y, t) satisfying the two
dimensional Laplace equation is given by

∇2Φ = 0, in the fluid region, (1)

along with the bottom boundary condition

∂yΦ = 0, on y = h, and Φ, |∇Φ| → 0, as y → ∞, (2)

in case of water of finite and infinite depths respectively. The linearized kinematic and dynamic
conditions on the plate covered surface are given by

∂tη + U∂xη = ∂yΦ, on y = 0. (3)

(D∂4
y −Q∂2

y + γ∂2
t + g)Φy = (∂t + U∂x)

2Φ, on y = 0, (4)

where ∂ with suffix indicates the partial derivative with D = EI/ρ, Q = N/ρ, γ = ρid/ρ, I =
d3/(12(1− ν2)), E is the Young’s modulus, N is the compressive force, ν is the poison’s ratio, and g
is the acceleration due to gravity.

3. Green’s function for flexural gravity waves
In this Section, the time dependent Green’s functions G(x, y;x0, y0, t) are derived for flexural gravity
wave problems in case of finite and infinite water depths assuming that a point source of strength
m(t) is located at (x0, y0) in the fluid domain. The Green’s function G(x, y;x0, y0, t) satisfy the two
dimensional Laplace equation as in Eq.(1) in the fluid domain except at (x0, y0), along with the
boundary conditions as in Eqs. (2)–(4). In addition, the Green’s function G(x, y;x0, y0, t) satisfies the
conditions

G ∼ m(t)ln r1, as r1 → 0, and G, |∇G| → 0, as r1 → ∞, (5)

with r1 =
√
(x− x0)2 + (y − y0)2. Further, the Green’s function G(x, y;x0, y0, t) satisfies the initial

conditions

G, ∂tG = 0, on y = 0, at t = 0. (6)



In order to determine G(x, y;x0, y0, t) associated with the aforementioned initial boundary value prob-
lem, the problem is transformed to a boundary value problem by using the Laplace transform in
the time variable t. The transformed Green’s function Ḡ(x, y;x0, y0, p) satisfies the two dimensional
Laplace equation as in Eq. (1) in the fluid domain except at (x0, y0) along with the boundary condi-
tions (2) and

(D∂5
y −Q∂3

y + g∂3
y − p2 − U2∂2

x − 2Up∂x)Ḡ = 0 on y = 0, (7)

Finite water depth:
The transformed Green’s function Ḡ(x, y;x0, y0, p) satisfying the governing Eq. (1) along with the
boundary conditions (2) and (7) in case of finite water depth is given by

Ḡ = m̄(p)

[
ln

r1
r2

−
∫ ∞

0

{
2e−khg1(y, y0) cos k(x− x0)

k cosh kh
+

II∑
m=I

Ω2
hg2(y, y0)e

iϵmk(x−x0)

{Ω2
h + (p+ iϵmUk)2}g3(k)

}
dk

]
, (8)

where Ω2
h = (Dk4 −Qk2 + g)k tanh kh, r2 =

√
(x− x0)2 + (y + y0)2,

g1(y, y0) = sinh ky sinh ky0, g3(k) = k sinh kh cosh kh,

g2(y, y0) = cosh k(h− y) cosh k(h− y0),

}
, ϵm =

{
1, for m = I,

−1, for m = II.
(9)

Using the inverse Laplace transform and convolution theorem, Eq. (8) yields

G(x, y, x0, y0, t) = m(t)

{
ln

r1
r2
−2

∫ ∞

0

e−khg1(y, y0) cos k(x− x0)

k cosh kh
dk

}
.

− 2

∫ ∞

0

Ωhg2(y, y0)

g3(k)

{∫ t

0
m(τ) sinΩh(t− τ) cos k{(x− x0)− U(t− τ)}dτ

}
dk. (10)

Assuming that the motion is simple harmonic in time with angular frequency ω, the associated Green’s
function is written in the form G(x, y;x0, y0, t) = Re[G(x, y;x0, y0)e−iωt]. Thus, the spatial Green’s
function G(x, y;x0, y0) satisfy Eq. (1) along with the boundary conditions (2) and (7). Hence, substi-
tuting p2 = −ω2 and m̄(p) = 1/(2π), Eq. (8) yields

G =
1

2π

[
ln

r1
r2

−
∫ ∞

0

{
2e−khg1(y, y0) cos k(x− x0)

k cosh kh
+

II∑
m=I

Ω2
hg2(y, y0)e

iϵmk(x−x0)

{Ω2
h − (ω + ϵmUk)2}g3(k)

dk

}]
. (11)

Now, applying Cauchy residue theorem, G(x, y;x0, y0) is rewritten as

G =
II∑

m=I

[ II∑
n=0,I

δm,nM1(kn)fn(y)fn(y0)

L′(kn, ϵm)
eiϵmkn(x−x0) +

∞∑
n=1

M1(kn)fn(y)fn(y0)

L′(kn, ϵm)
e−pn|x−x0|

]
, (12)

where M1(kn) = −iκn(Dk4n −Qk2n + g), fn(y) = cosh kn(h− y)/ cosh knh, with L(k, ϵm) = Ω2
h − (ω +

ϵmUk)2, δI,0 = δII,0 = δI,I = δII,II = 1, δI,II = δII,I = 0, κn = 1/2 for n = 0 and one otherwise.
The expansion formula in Eq. (12) reduces to the formula by Manam et al. (2006) in the absence of
current.
Infinite water depth:
Proceeding in a similar manner as in case of finite depth, the transformed Green’s function Ḡ(x, y;x0, y0, p)
in case of infinite water depth is obtained as

Ḡ(x, y;x0, y0, p) = m̄(p)

{
ln

r1
r2

−
II∑

m=I

∫ ∞

0

Ω2eiϵmk(x−x0)−k(y+y0)

k{Ω2 + (p+ iϵmUk)2}
dk

}
. (13)

where Ω2 = (Dk4 − Qk2 + g)k. Using inverse Laplace transform and convolution theorem from Eq.
(13), the time dependent Green’s function G(x, y;x0, y0, t) is obtained as

G = m(t) ln
r1
r2

−
∫ ∞

0

∫ t

0

2Ωe−k(y+y0)

k
m(τ) sinΩ(t− τ) cos k{x− x0 − U(t− τ)}dτdk. (14)



In case of simple harmonic motion proceeding in a similar manner as in case of finite water depth the
spatial Green’s function G(x, y;x0, y0) is obtained as

G(x, y;x0, y0) =
1

2π

[
ln

r1
r2

+

∫ ∞

0

e−ky

2

{
C+(k)eik(x−x0) + C−(k)e−ik(x−x0)

}
dk

]
, (15)

with C± = −Ω2e−ky0/[k{Ω2 − (ω ± Uk)2}]. Applying Cauchy residue theorem, the Green’s function
G(x, y;x0, y0) can be rewritten as

G =
II∑

m=I

II∑
n=0,I

δm,nM1(kn)e
−kn(y+y0)

F1(kn, ϵm)
eiϵmkn(x−x0) −

∫ ∞

0

M(k, y)M(k, y0)

k△(k)
e−k(x−x0)dk, (16)

where F1(k, ϵm) = 5Dk4 − 3Qk2 + g − 2U(ω + Uϵmk), M(k, y) = Ω2k cos ky − (ω + iUk)2 sin ky and
∆(k) = Ω4k2+(ω+ iUk)4. It can be easily proved that the series as in Eq.(12) and integral in Eq.(15)
are absolutely convergent.

4. Flexural gravity wave-maker problem
In this Section, the Green’s function derived in the aforementioned subsection will be used to find
the expansion formulae for the velocity potentials associated with the flexural gravity wave maker
problems in time domain in the presence of current in both the cases of finite and infinite water
depths. Here, the velocity potential Φ(x, y, t) satisfies the governing Eq. (1), the initial conditions (6)
along with the boundary conditions in Eqs. (2)–(4). Assuming that a wave maker located at x = 0 is
oscillating with velocity U1(y, t). Thus, the boundary condition on the wave maker is given by

∂Φ

∂x
= U1(y, t) + U, on x = 0. (17)

In order to find the velocity potential Φ(x, y, t), the initial value problem is converted to a boundary
value problem in Φ̄(x, y, p) where Φ̄(x, y, p) is the Laplace transform of Φ(x, y, t). Then, Green’s
identity is applied to the boundary value problem associated with the transformed functions Φ̄(x, y, p)
and a suitable chosen Green’s function Ḡmod(x, y;x0, y0, p) defined by

Ḡmod(x, y;x0, y0, p) = Ḡ(x, y;x0, y0, p) + Ḡ(x, y;−x0, y0, p), (18)

where Ḡ(x, y;x0, y0, p) is the transformed Green’s function as in Eqs. (8) and (13) in cases of finite and
infinite water depths respectively. From Eq. (18), it is clear that Ḡmod

x (x, y;x0, y0, p) = 0. Applying
Green’s identity to the boundary value problem in Φ̄(x, y, p) and Ḡmod(x, y;x0, y0, p) and proceeding
in a similar manner as in Manam et al. (2006), the velocity potential Φ̄(x0, y0, p) is obtained as

Φ̄(x0, y0, p) = A(p)− 2

∫
R

{
Ū1(y, p) + (U/p)

}
Ḡ(0, y;x0, y0, p)dy, (19)

A(p) =

∫ ∞

0

[
2U2

p2

(
Φ̄xxḠy − ḠxxΦ̄y

)
− 4U

p

(
ḠxΦ̄y − Φ̄xḠy

)]
y=0

dx

− 2

p2

{
D
(
Φ̄yyyxḠy + ḠyyyΦ̄xy

)
−QΦ̄xyḠy

}
(x,y)=(0,0)

, (20)

where R varies from 0 to ∞ and 0 to h in the case of infinite and finite water depth respectively.
Taking the inverse Laplace transform of Eq. (19) and using convolution theorem the velocity potential
Φ(x0, y0, t) in case of finite water depth is obtained as

Φ(x0, y0, t) = L−1{A(p)} − 2

∫ h

0

∫ t

0
{U1(y, t− τ) + U}

[
m(τ)

{
ln

r1
r2

−2

∫ ∞

0

(e−khg1(y, y0) cos kx0
k cosh kh

− Ωhg2(y, y0)Fh(τ, x, x0)

g3(k)

)
dk

}]
dτdy. (21)



Similarly, taking inverse Laplace transform of Eq. (19) and using convolution theorem the velocity
potential Φ(x0, y0, t) in case of infinite water depth is obtained as

Φ(x0, y0, t) = L−1[A(p)]−2

∫ ∞

0

∫ t

0
{U1(y, t−τ)+U}

{
m(τ) ln

r1
r2
−2

∫ ∞

0
Ωe−k(y+y0)F (τ, x, x0)dk

}
dτdy,

(22)
where

Fh(t, x, x0) =

∫ t

0
m(τ) sinΩh(t− τ) cos k[x− x0 − U(t− τ)]dτ, (23)

F (t, x, x0) =

∫ t

0
m(τ) sinΩ(t− τ) cos k[x− x0 − U(t− τ)]dτ. (24)

In particular, for p2 = −ω2 and m̄(p) = 1, from Eqs. (8) and (13), the spatial velocity potential
ϕ(x, y) associated with the time harmonic motion with angular frequency ω are derived as

ϕ(x, y) =
II∑

m=I

{ II∑
n=0,I

Am,n(kn)fn(y)e
iϵmknx +

∞∑
n=1

Bm,n(kn)fn(y)e
−knx

}
, for finite depth,

(25)

ϕ(x, y) =
II∑

m=I

II∑
n=0,I

A1m,n(kn)e
−kny(y)eiϵmknx +

∫ ∞

0

T̂ (k)M(k, y)e−kxdk

△(k)
, for infinite depth, (26)

where

Am,n(kn) =
2δm,nM1(kn)

L′(kn, ϵm)

[ ∫ h

0
{U1(y) + U/(iω)}fn(y)dy

−
∫ ∞

0

{
α(kn) + β(kn)

}
eiϵmknxdx+

kn tanh knh

ω2
{Qβ1 −Dk2nβ1 −Dβ2}

]
,

A1m,n(kn) =
δm,nM1(kn)

F (kn, ϵm)

[ ∫ ∞

0
{U1(y) + U/(iω)}e−knydy

−
∫ ∞

0

{
α1(kn) + β1(kn)

}
eiϵmknxdx+

kn
ω2

{Qβ1 −Dk2nβ1 −Dβ2}
]
,

T̂ (k) =

[
1

k

∫ ∞

0
{U1(y) + U/(iω)}M(k, y)dy +

(ω + Uik)2

ω2
{(Q−Dk2)β1 +Dβ2}

]
+

2iU

ω2

∫ ∞

0

{
(ω + Uk)2(iUβ4 − 2ωβ5)− Ω2kβ3(2ω + iUk)

}
e−kxdx,



(27)

with Bm,n(kn) = Am,n(ikn), β1 = ϕxy(0, 0), β2 = ϕyyyx(0, 0), β3 = ϕy(x, 0), β4 = ϕxx(x, 0), β5 =

ϕx(x, 0), β(k) =
U2k
ω2 {kβ3−β4 tanh kh}, α(k) = −2iUk

ω {iϵmβ3+β5 tanh kh}, α1(kn) and β1(kn) can be
obtained by taking h → ∞. It is easy to check that in the absence of current the expansion formula
for time harmonic velocity potential as in Eqs. (25) and (26) is same as in Manam et al. (2006).
Particular cases with computational results associated with the initial value wavemaker problem will
be presented in the workshop.
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