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INTRODUCTION

Regular waves propagating in a two-dimensional waterway can be
absorbed perfectly by a single floating body which oscillate in two modes
of motion such as a couple of heave and sway motions or heave and
roll motions. It is naturally required the symmetrical and asymmetrical
motions for the perfect wave absorption.

In a specific situation we can absorb waves perfectly by either motion
only of the floating body. For an instance, the floating body placed at the
end of the experimental towing tank without gaps between the floating
body and the tank wall enables it by the heave motion only. That is the
result of canceling another mode because of the symmetrical condition
of the free surface at the end of the tank. The wave tank having wave-
makers and active wave absorbers is generally designed based on this
principle. However, the situation of the experiment and the experimental
tank make it difficult to place the wave-makers and absorbers at the end
of the tank. For the multiple application of the experimental tank, it is
desired to place the wave-makers and absorbers at an arbitrary place and
time.

Symmetrical and asymmetrical motions of the floating body pro-
vide symmetrical and asymmetrical waves propagating from the floating
body. This wave condition can be generated by heave motion only of two
floating bodies. The mechanism of the wave-maker allowing only heave
motion is simpler and more practical than that of two modes of motion.

This paper addresses the problem of the wave absorption by the twin
floating bodies with the external dynamics system. In the beginning,
the wave condition for the perfect wave absorption by the twin floating
bodies is described and formulated based on the theory of the mutual
interaction of waves. As a solution of these formulae, the characteristics
of the external dynamics system attached on the wedge-shaped floating
body and block-shaped floating body are obtained. These results give us
the possibility and problem of wave absorption of this system.

WAVE CONDITION FOR PERFECT ABSORPTION

The arrangement of the twin floating bodies is shown in Fig. 1. The
geometry of floating bodies is symmetric and each body has geometry.
The heave motion is allowed only for these floating bodies. The external
dynamics system attached on the floating body is modeled with a spring
and a dash pot. Changing the restoring and damping factors of a spring
and a dash pot depending on a wave period, this system enables to absorb
incident waves perfectly. In a real system a spring and a dash pot are
replaced with a mechanical actuator controlled by the displacement and
velocity of the motion of the floating body. The wave and wave force
acting on the floating body assume to be obtained by the linear potential
theory.

Let s, d±j and r±j denote the complex amplitude of incident waves,
diffraction waves and radiation waves. The incident waves is naturally
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Fig. 1 Definition of waves and coordinate system.

expressed as

ζa(x, t) = Re
[
sei(kx+ωt)

]
.

Wherek is a wave number andω is an angular frequency of waves.
The incident wave coming from a far field into the floating body 1 is

completely absorbed in a steady condition, then the complex amplitude
of waves in the region I and III is described as

d+1 + r+1 + L(d+2 + r+2 ) = 0, (1)

d−2 + r−2 + L(d−1 + r−1 ) + Ls= 0. (2)

Where,L denotes the transfer function of the waves progressing the dis-
tanceℓ.

L = e−ikℓ.

Relation of the mutual interaction regarding the diffraction waves is de-
scribed as

d+1 = iH−14L(d+2 + r+2 ) + iH+14s, (3)

d−1 = iH+14L(d+2 + r+2 ) + iH−14s, (4)

d+2 = iH+24L(d−1 + r−1 + s), (5)

d−2 = iH−24L(d−1 + r−1 + s). (6)

Where,H±j4 is the Kochin function of diffraction waves,H+j4 indicates the
progressive wave from the floating bodyj toward the counter direction
as the incident wave andH−j4 indicates the progressive wave from the
floating bodyj toward the same direction as the incident wave.

Regarding the radiation waves, due to the symmetrical geometry of
the floating body, we can obtainr+1 = r−1 = r1 andr+2 = r−2 = r2 . Then



the solution of the simultaneous equations 1-6 are shown as

d+1 =W−1
[
sL2(R1 − T1)(R2 − T2)(R1 + Q1) − sR1

]
, (7)

d−1 =W−1
[
sL2(R1 − T1)(R2 − T2)(R1 + Q1) − sQ1

]
, (8)

d+2 =W−1sLR2(R1 − T1), (9)

d−2 =W−1sLQ2(R1 − T1), (10)

r1 =W−1
[
−sL2(R1 − T1)(R2 − T2)(R1 + T1) + sR1

]
, (11)

r2 =W−1sLT2(−R1 + T1). (12)

WhereW, Rj , Q j , T j are defined as

W = L2(R1 − T1)(R2 − T2) − 1,

Rj = iH+j4,

Q j = iH−j4.

T j = 1+ Q j .

MOTION OF FLOATING BODY

Let M1 denote the total mass of the floating body and the external dy-
namics system. Lety1 denote the displacement of the heave motion. The
force acting on the floating body 1 consists of the mechanical force by
the external dynamics system and the hydrodynamic force. Concerning
the hydrodynamic force, we must take the exciting force induced by the
reflected waves from the floating body 2. The linear equation of motion
of the floating body 1 with respect to the angular frequencyω is given as

M1ÿ1 = −N1ẏ1 −C1y1 − a1ÿ1 − b1ẏ1 − c1y1

+Re
[
ρgH12L(d+2 + r+2 )eiωt

]
+ Re

[
ρgH12seiωt

]
. (13)

Where,H12 is the Kochin function of the heave oscillation of the floating
body 1. The symbols ofa1, b1 andc1 indicate the added mass, the wave
damping coefficient and the restoring coefficient respectively. The com-
plex amplitude of the heave oscillation expressed asY1 andA1 is defined
as

A1 = −ω2(M1 + a1) + iω(N1 + b1) +C1 + c1, (14)

then, the equation 13 is represented as

A1Y1 = ρgH2
{
L(d+2 + r+2 ) + s

}
. (15)

The Kochin function gives the relation betweenr1 andY1 as

r1 = −ikH12Y1.

Applying this relation to the equation 15, we obtain

A1 =
−ikρgH12

2

r1

{
L
(
d+2 + r+2

)
+ s

}
. (16)

In a similar way, the equation for the floating body 2 is provided as

A2 =
−ikρgH22

2

r2
L
(
d−1 + r−1 + s

)
. (17)

Where,H22 is the Kochin function of the heave oscillation of the floating
body 2.

CHARACTERISTICS OF EXTERNAL DYNAMICS SYS-
TEMS

The characteristics of the external dynamics system is determined by
substituting wave conditions for the equation of motion. Substituting

Eqs. 8, 9, 11 and 12 for Eqs. 16 and 17, we obtainA1 andA2 for the
perfect absorption. They are expressed asAp1,Ap2;

Ap1 = ikρgH12
2 2L2(R1 − T1)(R2 − T2) − 1
L2(R1 − T1)(R2 − T2)(R1 + T1) − R1

, (18)

Ap2 = ikρgH22
2 1
T2
. (19)

Using the relations regarding the Kochin function:

H j2 = H̄ j2(Rj + T j), (20)

bj = ρωH j2H̄ j2. (21)

and the dispersion relation of wave:ω2 = kg, we obtain

Ap1 = iωb1
2L2P− (R1 + T1)

L2P− R1
, (22)

Ap2 = iωb2

(
R2

T2
+ 1

)
. (23)

Where,H̄ j2 is a conjugate ofH j2 and

P = (R1 + T1)(R1 − T1)(R2 − T2).

The characteristics of the external dynamics system at this moment
are described asCp j andNp j. They independently consist of the real and
imaginary part ofAp j as shown in Eq. 14. Therefore, comparing the
real and imaginary part of (22) and (23) gives the characteristics of the
external dynamics system.

Cp1 = Re
[
Ap1

]
+ ω2(M1 + a1) − c1 (24)

Np1 =
1
ω

Im
[
Ap1

]
− b1 (25)

Cp2 = iωb2
R2

T2
+ ω2(M2 + a2) − c2 (26)

Np2 = 0 (27)

Equations 26 and 27 are derived from the matter thatRj/T j is a pure
imaginary number. The wave power absorbed by each external dynamics
system is expressed by

Absorbed wave power=
1
2

Np jω
2
∣∣∣Yj

∣∣∣2.
The equation 27 naturally indicates that the external dynamics system
of the floating body 2 does not absorb wave energy. Actually the char-
acteristics expressed by Eq. 26 and 27 corresponds to the condition of
the external dynamics system of a single floating body which perfectly
reflects the incident waves. Namely, the wave energy is absorbed by the
external dynamics system of the floating body 1 only. Moreover, this
characteristics does not depend on the gap between the floating bodies.

Using a single symmetrical floating body with the external dynamics
system, we can absorb a half of wave energy at a maximum efficiency.
Then, the condition of the external dynamics system is well known as

C = ω2(M + a) − c, (28)

N = b. (29)

Equations 24-26 are regarded as the modified condition from Eqs. 28
and 29.

COMBINATION OF FLOATING BODY

The theoretical characteristics of the external dynamics system for the
perfect absorption of incident waves are shown in several cases regarding
the wedge-shaped and block-shape floating body and their combination.
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Fig. 2 Geometry of wedge-shaped floating bodies.
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Fig. 3 Restoring coefficients of the external dynamic sys-
tem of wedge-shaped floating bodies.
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Fig. 4 Damping coefficients of the external dynamic sys-
tem of wedge-shaped floating bodies.

The arrangement of the wedge-shaped floating body is shown in Fig.
2 and the theoretical characteristics of the external dynamics system are
shown in Figs. 3 and 4. These were calculated by Eq. 24-27 and the
Kochin functions were obtained by the boundary element method based
on the linear potential theory. The aspect ratio of the draft:d and the
breadth:B at the water line isd/B = 0.6. The gap between the floating
bodies is changed fromℓ/(B/2) = 2.5 to 3.5. The nondimensional fre-
quencyK(B/2) < 2 is appropriate for a real wave-maker and absorber
of an experimental tank/basin. The mass inside the external dynamics
system is disregarded in the calculation.

According to the motion of equation of the floating body, the total
restoring coefficient must be positive in a steady oscillation. Its condition
is provided asCp j + cj > 0. Therefore, the restoring coefficient of the
external dynamics system must satisfy

Cp j > −cj . (30)
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Fig. 5 Geometry of block-shaped floating bodies.
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Fig. 6 Restoring coefficients of the external dynamic sys-
tem of block-shaped floating bodies.
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Fig. 7 Damping coefficients of the external dynamic sys-
tem of block-shaped floating bodies.

However, this condition is not applicable toCp2 in the wider range of
wave frequency more thanK(B/2) > 0.5. The snap point ofCp1 depends
on Rj , T j and the gap between the floating bodies. In this point a steady
oscillation is not obtained due to the condition of Eq. 30 and the wave ab-
sorption is impossible due toNp1 = 0 as shown in Fig. 4. As a result, the
range of the wave frequency is quite restricted for the steady oscillation
of this system.

The arrangement of the block-shaped floating body is shown in Fig.
5 and the theoretical characteristics of the external dynamics system are
shown in Figs. 6 and 7. The restoring coefficients satisfy the condition
Eq. 30 in the wider range of wave frequency than that of the wedge-
shaped floating body as shown in Fig. 6. However, the damping coeffi-
cients are much less(not zero) in the range ofK(B/2) > 0.5 as shown in
Fig. 7. This matter indicates that a large amplitude of the heave motion
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Fig. 8 Combination of wedge-shaped and block-shaped
floating bodies.
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Fig. 9 Restoring coefficients of the external dynamic sys-
tem of the combination of wedge-shaped and block-
shaped floating bodies.
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Fig. 10 Damping coefficients of the external dynamic sys-
tem of the combination of wedge-shaped and block-
shaped floating bodies.

of the floating body 1 appears for the wave energy absorption.

The combination of the wedge-shaped and block-shaped floating
body is shown in Fig. 8 and the theoretical characteristics of the ex-
ternal dynamics system are shown in Figs. 9 and 10. The displacements
of both floating bodies are same. The restoring coefficientCp2 satisfies
the condition Eq. 30 in all range, howeverCp1 is not acceptable for this
condition at the snap point. The snap points appear in the lower wave fre-
quency: 0.5 < K(B/2) < 0.7 than the combination of the wedge-shaped
and wedge-shaped floating bodies because the gap between the floating
bodies is relatively larger.

The combination of the block-shaped and block-shaped floating bod-

ies seems to be the best for wave absorption, however the efficiency of
wave generation of the block-shaped floating body is not higher. To ap-
ply the wedge-shaped floating body having the higher efficiency of wave
generation, we need to avoid the snap point ofCp1. The relation between
Rj , T j and the gap of the floating bodies must be investigated because the
snap point ofCp1 is determined by the denominator of Eq. 23.

CONCLUSIONS

The characteristics of the external dynamics system attached on the
twin floating bodies for the perfect wave absorption are shown theoreti-
cally with the mutual interaction theory of waves. The external dynamics
system is modeled by a linear spring and dash pot. As a result, the fol-
lowing knowledge is obtained.

• The external dynamics system of the floating body located at the
lee side for incident waves must reflect waves perfectly. The
damping coefficient of this external dynamics system must be
zero. All wave energy is consequently absorbed by the external
dynamics system located at the weather side.

• The total of the mechanical and hydrodynamic restoring coeffi-
cients must be more than zero for the steady oscillation of the
floating bodies. This condition is not satisfied in the wider wave
frequency for the system of the wedge-shaped and wedge-shaped
floating bodies. However, replacing the floating body by the
block-shaped one, we can satisfy this condition.

• This system is also expected to have the function of a wave-
maker, namely has to absorb and generate waves simultaneously.
Considering the efficiency of wave generation, the wedge-shaped
floating body is better at the weather side. The restoring coef-
ficient of the external dynamics system attached on the wedge-
shaped floating body snaps at a specific wave frequency. At this
frequency, the condition for the steady oscillation is not satisfied.
To apply the wedge-shaped floating body having the higher effi-
ciency of wave generation, we need to avoid this snap point.
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