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1 Introduction

Trapped modes are very special solutions to the
linear water wave problem in which a solution
with finite energy but no decay in time decay
exists (McIver, 1996). A near trapped mode
is a wave which has a very slow decay in time
(and correspondingly slow growth in distance)
and they may be thought of as corresponding
to slight perturbations of a trapping structure
geometry, although they occur in many differ-
ent situations (Evans & Porter, 1997; Meylan &
Eatock Taylor, 2009) and are a feature of multi-
ple scattering and resonance.

It is well known that strong connections exist
between the frequency and time domain solutions
and this connection is exploited in the Cummins
method (Cummins, 1962), which is the standard
solution method in the time-domain for deter-
mining body motions (it cannot be used to de-
termine the fluid motion). However, a more di-
rect connection between the frequency and time
domain solution can be derived using the gener-
alized eigenfunction method (Fitzgerald & Mey-
lan, 2011). The singularity expansion method is a
method for approximating time dependent wave
problems by a deformation of the contour of in-
tegration which appears in the inverse Laplace
transform (Hazard & Loret, 2007).

2 Mathematical Formulation

Positions are described in Cartesian coordinates
x = (x, z) with z being directed vertically up-
wards. The fluid is two-dimensional with do-
main Ω of constant finite depth h−1 for x < −l
and h1 for x > l. The sea bed is positioned at
z = −h(x), the free-surface is at z = 0, and the
domain extends to infinity in the horizontal di-
rections. The linearized boundary conditions can
be adopted. The time-dependent motions are de-

scribed by the velocity potential Φ(x, t) which
satisfies

∆Φ(x, t) = 0, x ∈ Ω, (1a)

∂nΦ = 0, x ∈ ∂ΩB, (1b)

∂nΦ = 0, z = −h(x), (1c)

where ∂n is the outward normal, ∂ΩB is the wet-
ted body surface and z = h(x) is the sea floor.
On the free-surface ∂ΩF

∂zΦ = ∂tζ, x ∈ ∂ΩF , (1d)

∂tΦ = −ζ, x ∈ ∂ΩF , (1e)

where ζ is the free surface displacement. These
equations have been non-dimensionalized. An
initial disturbance on the free-surface is given by

ζ(x, 0) = ζ0(x)|t=0 , x ∈ ∂ΩF . (2)

We assume that Φ(x, 0) = 0. A finite energy
condition must also be satisfied.

2.1 Frequency-domain solution

Given that the motions are assumed harmonic
for all time we can write Φ = Re {φe−iωt} and
ζ = Re {ξe−iωt} so that equations (1a-1e) become

∆φ = 0, x ∈ Ω, (3a)

∂nφ = 0, x ∈ ∂ΩB, (3b)

∂nφ = 0, z = −h(x), (3c)

−iωξ = ∂zφ, x ∈ ∂ΩF , (3d)

iωφ = ξ, x ∈ ∂ΩF . (3e)

In the frequency domain, the initial conditions
given by equations (2) are replaced by conditions
at infinity. We assume a wave of the form

φI
κ(x, kκ) = e−iκkκx

cosh kκ(z − hκ)

cosh kκhκ
, (4)

is incident from negative infinity (κ = −1) or
incident from positive infinite (κ = 1) where
kκ is the wavenumber given by the positive



real solution to the dispersion equation ω2 =
kκ tanh kκhκ. We decompose the total potential
as the sum of an incident and scattered wave po-
tential

φκ(x, kκ) = φI
κ(x, kκ) + φS

κ(x, kκ), (5)

where the scattering potential φS
κ must satisfy the

radiation condition .

3 Solutions of the time-dependent
problem.

We define the Dirichlet to Neumann operator
∂nG by

∂nGψ = ∂nΦ|z=0 , x ∈ ∂ΩF , (6)

where Φ is the solution to

∆Φ = 0, x ∈ Ω, (7a)

∂nΦ = 0, x ∈ ∂ΩB, (7b)

∂nΦ = 0, z = −h(x), (7c)

Φ = ψ, z = 0, x ∈ ∂ΩF . (7d)

Therefore, equations (1a-1e) can be written as

∂2t ζ + ∂nGζ = 0. (8)

3.1 Generalized eigenfunction expansion
method

The generalized eigenfunction method (GEM)
presented here is a slight modification of that pre-
sented in Meylan (2009) to allow for non-constant
depth and to include the possibility of a trapped
mode. The evolution operator ∂nG is self-adjoint
in the Hilbert space given by the following inner
product

〈ζ, η〉H =

ˆ

∂ΩF

ζη∗ dx, (9)

where ∗ denotes complex conjugate. The eigen-
functions of ∂nG satisfy

∂nGψ = ω2ψ. (10)

Equation (10) is nothing more than equations
(3). We define the eigenfunctions by restrict-
ing the frequency domain solution for an incident
wave to the free surface, i.e.,

ψκ(x, k) = φκ(x, kκ)|x∈ΩF
. (11)

It is possible for there to exist point spectra
for this operator which correspond to the exis-
tence of a trapped mode. In this case

∂nGψp = ω2
pψ, (12)

but

〈ψp, ψp〉H <∞. (13)

The GEM allows us to calculate the time-
dependent solutions using these eigenfunctions as
follows

ζ(x, t) = Re
{

ˆ ∞

0

∑

κ∈{−1,1}

〈ζ0(x), ψκ(x, k)〉H

× ψκ(x, k)
dk

dω

∣

∣

∣

∣

h=hκ

e−iωt dω
}

+ Re

{

∑

p∈Λ

〈ζ0(x), ψp(x)〉H
〈ψp(x), ψp(x)〉H

ψp(x)e
−iωpt

}

, (14)

where Λ is the set of trapped mode points (which
is the empty set in the case no trapped waves are
present).

3.2 Fourier/Laplace transform solution of
time-domain equations

The Fourier/Laplace transform and its inverse is
given by

f̂(σ) =

ˆ ∞

0

f(t)eiσt dt, f(t) =
1

2π

$ ∞

−∞

f̂(σ)e−iσt dσ,

where the integration is taken above any poles on
the real axis (which correspond to trapped modes
in our case). The Fourier/Laplace transform of
equation (8) and the initial condition (2) gives

−σ2ζ̂ + ∂nGζ̂ = −iσζ0. (15)

The solution for the displacement is given by

ζ(x, t) =
1

2π

$ ∞

−∞

−
(

∂nG− σ2
)−1

iσζ0e
−iσt dσ

= Re

{

1

π

$ ∞

0

−
(

∂nG− σ2
)−1

iσζ0e
−iσt dσ

}

.

(16)



3.3 Singularity expansion method

The singularity expansion method (SEM) is
based on deforming the contour of integration
and writing the integral (16) as a sum over the
poles and ignoring the contribution from branch
cuts or the integral at infinity. The poles are the
solutions to

(

∂nG− σ2
)

χp = 0, (17)

where we do not restrict χp to have finite energy
and we consider complex σ. We also define the
mode associated with the adjoint operator, χ̄p, as

(

∂nG− σ2
)∗
χ̄p = 0, (18)

where the star denotes the adjoint operator. If we
approximate the solution to equation (16) by the
contribution from the only the poles we obtain

ζ(x, t) ≈

Re

{

∑

p

〈−2σpζ0(x), χ̄p(x)〉H

〈(∂nG− σ2)′ χp, χ̄p〉H
χpe

−iωpt

}

. (19)

4 Numerical solution

We describe here a numerical method which al-
lows us to solve for the the Fourier/Laplace solu-
tion even for complex frequency values and which
we can use to calculate the SEM solution. We
use a boundary element method combined with
a matched vertical eigenfunction expansion. A
finite domain Ω̄ is defined by restricting Ω to
|x| < l. We discretize the boundary of Ω with a
set of constant panels. Outside of the domain Ω̄,
Ω consists of two semi-infinite domains contain-
ing no bodies where the fluid depth is constant
where the solution can be found by an eigenfunc-
tion expansion. The method is described in detail
in Wang & Meylan (2002) and is similar to the
modified finite element method used in Hazard &
Lenoir (1993).

The constant panel boundary element
method gives the matrix equation

1

2
φ = Hnφ−Hφn, (20)

where φ (φn) is the vector of potential (deriva-
tive) values on the boundary panels and H (Hn)
is the matrix corresponding to the Green function
(normal derivative of the Green function).

To solve equation (20) we need to find a rela-
tionship between the normal derivative and the
potential on the boundary. The boundary is di-
vided into four regions. ∂Ω1 is the body and sea
floor, ∂Ω2 is the free surface, ∂Ω3 is the left hand
vertical boundary, and ∂Ω4 is the right hand ver-
tical boundary.

The boundary condition on ∂Ω3 and ∂Ω4 is
the most complicated as it depends non-trivially
on the frequency. We use an integral relation to
expresses the normal outward derivative in terms
of an expansion in the vertical eigenfunctions,

∂nφ = Q
−1φ, on ∂Ω3. (21)

where Q
−1 is given in Wang & Meylan (2002).

We apply a similar derivation on the boundary
∂Ω4. The normal derivatives can be expressed in
terms of the potential on all four boundaries,

∂nφ = 0, on ∂Ω1, (22a)

∂nφ = σ2φ, on ∂Ω2, (22b)

∂nφ = Q
−1φ, on ∂Ω3, (22c)

∂nφ = Q1φ, on ∂Ω4. (22d)

We write this condition as

φn = A(σ)φ, (23)

where we explicitly included the dependence of
A on the parameter σ.

For the case of the Fourier/Laplace transform
solution we have

(

1

2
−Hn +HA

)

φ = Hf 0, (24)

where f 0 = 0 on ∂Ωi except

f 0 = ζ0, on ∂Ω2. (25)

We locate the poles and vector χp by search-
ing for the values σp for which

(

1

2
−Hnφ+HA(σp)

)

χp = 0, (26)

and we define the adjoint vector χ̄p by
(

1

2
−Hn +HA(σp)

)∗

χ̄p. (27)

We can then express the SEM numerically using
our matrix approximation of the operator as

ζ(x, t) ≈

Re

{

∑

p

〈 2σpf 0, χ̄p(x)〉χp(x)

〈
{

H
(

1
2
−Hn +HA

)}′
χp, χ̄p〉

e−iωpt

}

,

(28)



where the inner product is the standard inner
product for vectors. Note that by χp we mean
the vector defined on the boundary of Ω̄ while χp

is the value restricted to the surface, and defined
outside the region Ω̄ if needed. We require the re-
gion |x| < l to enclose the initial condition. The
derivative of the matrix is calculated numerically.

5 Results

We consider an initial surface displacement of the
form

ζ0(x) = e−20(x−0.2)2 . (29)

The exact solution is given by the solid line and is
calculated using the GEM (equation (14)). The
SEM solution (calculated using equation (28)) is
given by the dashed line.

Figure 1 shows the exact and SEM solution
for the case of two semi-circular fixed bodies with
radius 0.1 centered at (±1, 0). The fluid depth is
constant h = 1 and is not plotted but the circular
bodies are plotted for illustration. Sixteen poles
were used in the SEM approximation.

6 Summary

We have shown that the phenomena of trapping
and near trapping in the time domain can be con-
nected via the formula derived using the SEM.

We have derived a practical method to imple-
ment the SEM and implemented it numerically.
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Figure 1: The exact (solid line) and SEM (dashed line) solution for the times shown. The scattering
bodies are plotted for illustration.


