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1. Introduction  
The energy reduction at the transportation on the 
water is an actual problem. The searching for vessel 
shapes with minimal and zero wave resistance is an 
important part of them. It is possible to search of 
shapes of zero wave resistance at least by two ways. 
The first is a modification of the body shape so that 
the wave resistance is minimal. The other method is 
based on a bijection of shape and pressure 
distribution that is generated. It is the searching of 
pressure distribution which gives the optimal shape. 
The first method can be called a direct, the second - 
an inverse. It is possible to search for optimal shape 
by combination of these methods. The shapes of 
zero wave resistance are considered by inverse 
method for several types of pressure distribution in 
[1]. In the present work the inverse method on a base 
of generalized functions technique is developed and 
some theoretical aspects of this approach are 
examined.   The relation with trapped modes is 
considered. 
 
2. Conditions for existence of the shapes with zero 
wave resistance 
We consider the motion of a body with constant 
speed 0V  on a surface of ideal and incompressible 
liquid in assumptions of the linear theory of waves. 
The coordinate system is associated to the body and 
the x  axis is directed against the velocity of the 
inverse flow. The fluid motion is irrotational and the 
potential ( )tyXxV ,,0 ϕ+−  exists, where ϕ  is the 
potential of disturbance velocity, 1RxX ∈=  in 2D-
theory and ( ) 2, RzxX ∈=  in 3D-theory, y  is the 
vertical axis, t  is a time. The free surface shape is 
described by the function ( )tXy ,η= , 

( )tSRX n \∈ , 2,1=n , ( )tS  is the projection on nR  
of a point set of free surface and body surface 
intersection..We consider the shapes, which we can 
describe by an unique function   ( )tXfy ,= , 

( )tSX ∈  to simplify the analysis.  
The problem is formulated as unsteady in order to 
avoid the analysis of diffraction conditions on 
infinity. The required steady solution with correct 
conditions on infinity is easier obtained by limiting 
process at ∞→t .  In addition, at 00 =V  it is the 
problem about a floating body on a wave surface. In 

this case, the steady problem will be the problem of 
steady oscillations under wave action and a 
searching for body shape which does not make 
resistance to a breaking wave.  
The boundary conditions on the border of fluid and 
solid body ( )tΓ  include the Bernoulli integral   

( ) ( ) ( )tyXptXgfN ,,,2/2 −−=∇+ ϕϕ ,      (1) 
and kinematic condition 

( )( ) ( )tXNftXfy ,, =−∇⋅∇ϕ , ( )tSX ∈ ,      (2) 

where 
x

V
t

N
∂
∂

−
∂
∂

= 0 ,  ( ) ( )
ρ

0,,
,,

ptyXp
tyXp a −
=  

is a relative pressure in the fluid, 0p  is an absolute 
pressure on the free surface, ρ  is the density of 
fluid. The conditions on a free surface are the same 
but linearized and with zero pressure: 

( ) ( )tSRXytXgN n \,0,, ∈−=−= ηϕ ,   (3) 

( ) ( )tSRXytXN
y

n \,0,, ∈−==
∂
∂ ηϕ ,   (4) 

If the depth of fluid is h , then  

0=
∂
∂

y
ϕ , hy −= .   (5) 

For infinity depth   
0=∇ϕ , −∞→y .   (6) 

The Initial conditions are 

( ) ( )yXyX ,0,, 0ϕϕ = , ( ) ( )yXyX
t

,0,, 1ϕ
ϕ

=
∂
∂ , (7) 

where 0ϕ  and 1ϕ  are known functions.  
For unique calculation of wave resistance the body 
mass and its distribution of body volume or the total 
mass and the center of mass position must be set.  
If the relations (1) and (2) have the nonlinear terms, 
the numerical solution is only possible. It is obvious 
that it is useful to have all possible solutions of 
simpler problems to better understand the problem, 
to create a theoretical basis and benchmarks for the 
full nonlinear theory. For this purpose we consider 
the case when the conditions (1) and (2) are 
linearized. It is can be valid for weakly submerged 
hulls or for motion with a relatively high speed, 
when the immersion is reduced due to the dynamic 
overpressure. 
The boundary conditions (1)—(2) on the solid 
boundaries after linearization and conditions on the 
free surface (3)—(4) can be combined, if we 
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introduce a function of the pressure distribution 
( )tXp ,  on the entire plane 0=y , which determines 

the pressure on the body at ( )tSX ∈  and is zero at 
the free surface. We will describe the form of fluid 
boundary by single function ( )tX ,η  also, and 
( ) ( )tXftX ,, =η  for ( )tSX ∈ . 

The new problem can be written as 
02 =∇ ϕ , 0<<− yh ,   (8) 

( ) ( )tXptXgfN ,, −−=ϕ ,  0−=y , (9) 

( )tXN
y

,ηϕ
=

∂
∂ , 0−=y .   (10) 

We use the Fourier transform to analyze the 
problems (8)—(10) and (5)—(7).  
First, we continue the function ϕ  on the whole 
space 1+nR . We set ( ) 0,, =tyXϕ  for  0>y  and 
( ) ( )thyXtyX ,2,,, −−=ϕϕ  for hy −< .  

As a result, the function ϕ  is defined on the whole 
space and it is continuous with their derivatives at 

hy −=  and it is discontinuous with their derivatives 
at  0=y  and hy 2−= . Then we introduce the 
generalized functions ϕ , p  and η  generated by a 
classical, over the space of tempered test functions 
[2]. In this case, the generalized Fourier transforms 
of these functions exist in the same space. 
The generalized function ϕ  obeys the equation 

( ) ( ) ( )[ ]−+′−′−−=∇ hyytX 2,0,2 δδϕϕ    

( ) ( ) ( )[ ]hyytX
y

2,0, ++−
∂
∂

− δδϕ ,  (11) 

where ( )yδ  and  ( )yδ ′  are delta function and its 
derivative. We designate the generalized Fourier 
transform of function ϕ  in nR  on X  as ( )ty,,ΛΦ , 
where ( )µλ,=Λ  in 2R  and λ=Λ  in 1R . We 
designate also the Fourier transforms of  p  and η  
as ( )tP ,Λ  and ( )tH ,Λ .  We obtain  

( ) ( ) ( )tHN
h
hy

ty ,
sinh

cosh
,, Λ

ΛΛ

+Λ
=ΛΦ  (12) 

and relation between ( )tP ,Λ  and ( )tH ,Λ   

( ) ( ) ( )tPtHgN ,,1 2 Λ−=Λ







+

Λζ
, (13) 

by applying the Fourier transform to (11) and the 
method of fundamental solutions, and taking into 
account (9) and (10). There are 22 µλ +=Λ  in 

2R  and λ=Λ  in 1R , 0Vi
t

N λ+
∂
∂

= , and 

( ) hΛΛ=Λ tanhζ .  At ∞→h  we have ( ) Λ=Λζ  

and ( ) ( ) ΛΛ=ΛΦ Λ /,,, tHNety y .  
The general solution of (13) with initial conditions is  

( ) ( ) ( ) ( ) ( ) +−ΛΛΛ=Λ ∫ −
t

tVi dtDePtH
0

,,, 0 τττζ τλ   

( ) tVietG 0,0
λ−Λ+ , (14) 

where ( ) ( )[ ] ( )ΛΛ=Λ ζζ gtgtD /sin, , 
( ) ( ) ( ) ( ) ( )tDHtDNHtG ,,, 100 ΛΛ+ΛΛ=Λ , 

and the functions ( )Λ0H  and ( )Λ1H  are Fourier 
transforms of functions ( ) ( )0,0 Λ=Λ ηη  and 

( ) ( )0,1 Λ
∂
∂

=Λ
t
ηη  which are obtained from initial 

conditions. The inverse Fourier transform of (14) in 
nR  gives the formula for determination of time-

dependent shape of the surface generated by the 
pressure ( )tXp ,  at arbitrary time dependence.  
We obtain from (14) the formula for steady motion 
at a constant speed, assuming that the steady motion 
appears at larger times when there are no pressure 
perturbations, that is, when ( ) ( )Λ≈Λ PtP , . For large 
t  the initial conditions can be set homogeneous and 
then    

( ) ( ) ( ) ( ) ( )[∫
∞−

Λ− −Λ
Λ

−=Λ
t

ieP
g

itH 1

2
, τξτθζ   

 ( ) ] ττξ de i Λ−− 2 ,  
where ( )tθ  is the Heaviside function, 

( ) ( )Λ−=Λ ζλξ gV01  and ( ) ( )Λ+=Λ ζλξ gV02 . 
At ∞→t , the integral here is the sum of the Fourier 
transforms of  Heaviside functions.  
As a result, ( )tH ,Λ  will not depend on the time, 
( ) ( )Λ=Λ HtH ,  and we obtain  

( ) ( ) ( )ΛΛ=Λ QPH   (15) 
as in [4],  where  

( ) ( )
( )

+
Λ−

Λ
=Λ

ζλ
ζ

gV
regQ 2

0
2

   

( ) ( )( ) ( )( )[ ]Λ−Λ
Λ

+ 212
ξδξδζπ

g
i , 

and reg  indicates a regularization, and delta 
functions support on a ( )1−n -dimension surfaces 
( ) 01 =Λξ  and ( ) 02 =Λξ .   

The similar formulas for harmonic oscillations on 
the wave surface are obtained from (14) based on the 
assumptions that the pressure becomes harmonic 
under the action of an regular wave ( ) ikteH Λ*

0  and 
( ) ( ) iktePtP Λ=Λ *, , where k  is the oscillation 

frequency, and ( )Λ*
0H  and ( )Λ*P  are amplitude 

functions. At ∞→t , we obtain in analogous, that   
( ) ( ) ikteHtH Λ=Λ *,  and 

 ( ) ( ) ( ) ( )Λ+ΛΛ=Λ *
0

*** HQPH .       (16) 
The wave resistance is now  
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( ) ( ) ( )∫ ∂
∂
⋅−=

nR
w dXX

x
XptR η .          (17) 

We can show that, since the function ( )Xp  is square 

integrable and finite, and ( )X
x∂

∂η  is a sectionally 

continuous, then 

( ) ( )
( )

( )( ) ( )∫∫ ΛΛΛ=
∂
∂

nn R
n

R

dHiPdXX
x

Xp λ
π

η
2

1 , (18)  

where the overbar means the complex conjugate.  
For the motion described by (15), we obtain 

( ) ( ) ( ) =ΛΛ−Λ−= ∫
nR

w dQiPR λ2  

( ) ( ) ( )( ) ( )( )[ ]∫ ΛΛ−ΛΛ
Λ

−=
nR

dP
g 21

2

2
ξδξδζλπ . 

The products with the delta functions which support 
by ( )1−n -dimensional surfaces are calculated by 
decomposition formulas of generalized functions. 
 As a result, wR  will depend on the value of ( ) 2ΛP , 
calculated at fixed values of Λ , giving the 
parameters of movement. The value of ( ) 2ΛP  
determines the wave amplitude at infinity and 
depends on ( )Xp  and S . The minimization of wR  
will consist in searching for optimal ( )Xp   and S . 
We have the analogous formulas in the case of 
harmonic oscillations in the wave surface.  
 
3. The simple samples 
We consider a simple example of 2D theory ( 1=n ) 
of motion with speed 0V  at ∞→h [3]. 

Then λ=Λ  and ( ) λλλξ gV 02,1 = , 

( )( ) ( ) 0
2

02,1 //2 VVgλδλξδ = , and we have in 
nondimesional values 

( ) 22 APRx ννν == ,          (18) 

where 2
0/Vga=ν , a  is a linear size,  

22
cs AAA += , cs AA /tan =α , 

( )∫
∞

∞−

= xdxxpAs νsin ,  ( )∫
∞

∞−

= xdxxpAc νcos . 

The conditions for mass and center of mass position 
are  

( ) ν
ρ

=
∆

=∫
∞

∞−
2

0
2Va

dxxp y , ( ) νcxdxxxp =∫
∞

∞−

,  (19) 

where y∆  is the body weight, or displacement, and 

cx  is the center of mass axis, 3 / ga y ρ∆= . 
There is the most easily to make a zero amplitude in 
(18) for symmetrical distribution of pressure at 

0=cx . 

The amplitude of the resulting wave at 
( ) constpxp c ==  on ]1,1[−  is 

ν
νν sin2cos

1

1
ccc pxdxpAA === ∫

−

, and wave 

resistance is ν
ν

ν 2
2

2 sin2 c
cw

pAR == . It is equal to 

zero at 
ν
πn

=1 , ,...2,1 ±±=n . Therefore, the length 

of the interval 2=l  must satisfy the condition 
νπ /2 nl = , ,...2,1=n .. Since the wavelength is 
νπ /2=L , then this condition is nLl = . The length 

of the interval must be a multiple of the wavelength. 
We consider the constant pressure distribution on the 
two symmetrical identical segments [ ]b−− ,1  and 
[ ]1,b  as a 

( ) [ ]( ) [ ]( )xbpxbpxp ;1,;,1 21 ϑϑ +−−= , 10 << b  
where [ ]( )xdc ;,ϑ  is the characteristic function of 
interval which is 1 for [ ]dcx ,∈  and is zero for 

[ ]dcx ,∉ . It is ensue from (19) in the case of a 
symmetric distribution of pressure that must be 

( )b
pp

−
==

1221
ν , or 

( ) ( ) [ ]( ) [ ]( ){ }xbxb
b

xp ;1,;,1
12

ϑϑν
+−−

−
= . 

The calculations show that at 2=l  the value Ll / , 
giving 0=wR , tends to 1 at 0→b . It tends to 0.5 at 

1→b .   Indeed, at 1→b  we have 

( ) ( ) ( )[ ]11
2lim −++=

→
xxxp

ab
δδν .  (20) 

In this case 0=sA , and νν cos=cA . The wave 
resistance is zero at ( ) νπ /2/11 n+= , 

,...2,1,0 ±±=n  or  ( )Lnl +== 2/12 , ,...2,1,0=n  
The velocity potential for distribution (20) is  
( ) =yx,ϕ  

( ) ( )[ ] +−−+
−

= ∫
∞

0

1sin1sin..
2

λλλ
νλπ

ν λ

dxxepv
y

 

 xe y ννν ν coscos+ . (21) 
We consider also the harmonic oscillations on the 
wave ( ) ( ) iktextx *

00 Re, ηη = . Then 
( ) ( ) ( )[ ]ωλδωλδπλ ++−= 00

*
0 2 BAH , 

 where 0A  and 0B  are complex constants that 
specify the wave amplitude, gak /2=ω . In this 
case 

( ) ( )
+

−
=

λω
λλ

λ
*

* P
regH  

( ) ( ) ( ) ( )[ ] ( )λωλδωωλδωωπ *
0

** HPPi ++−+−+  
and wave resistance is  
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( ) ( )[ ]ωωω −−= *
0

*
0

* PBPAiR w . 

If the wave is incident on the left then 00 =B  and 

( )ωω *
0

* PAiR w = . 
Then the modulus of wave resistance  

( ) RAPAR w
2

0
*

0
* == ωω , 

where ( ) 0
* / APR ωω=  is the reflection 

coefficient.   
We consider the pressure distribution  

( ) ( ) ( )[ ]11
2

Re * −++= xxpxp c δδ , ( ) 0Im * =xp . 

In this case ωcoscc pA = . The reflection coefficient 
is zero at ππω n+= 2/ , ,...2,1,0 ±±=n   
The velocity potential in this case is 

( ) =yx,*ϕ       

( ) ( )[ ] −−++
−

= ∫
∞

0

1cos1cos..
2

λλλ
ωλπ

ω ω

dxxepvp y
c  

 ( )yxxepi y
c ,coscos *

0ϕωωω ω +−  .  (22) 
Other examples will be shown in the report. 
 
4. Relation with trapped modes 
The potentials (21) and (22) for the pairs of 
symmetric point pressure are there actually limits of 
potentials of symmetric pairs bodies when they 
degenerate into points. At zero wave resistance the 
potentials (21) and (22) do not contain the second 
terms. The first terms coincide up to a constant 
factor with potentials that are among the known 
examples of potentials of trapped modes [4, 5] at 

1=a . 
Trapped modes are defined as modes on the surface 
of an ideal fluid with a finite energy that do not 
create waves on infinity, and therefore have zero 
wave resistance. In the examples these modes are 
generated by point sources located in a certain way. 
Pressure points which we have considered make 
sense combinations of point sources also and 
generate waves of finite energy, too. However, the 
trapped modes [4, 5] have another important 
characteristic. They are the solutions of the 
homogeneous boundary value problems for the 
differences of two potentials and illustrate the 
examples of non-uniqueness of solutions. 
The homogeneous condition on the free surface is 
also homogeneous in the original problem. In 
particular, for the problem of Neumann-Kelvin it has 
the form 

( ) ( ) 00,0,2

2
2

0 =−
∂
∂

+−
∂
∂ x

y
gx

x
V ϕϕ . (23) 

This condition is also satisfied for the difference of 
potentials.  The homogeneous condition on the solid 

body is 0/ =∂∂ nϕ . However, in the case of 
degeneracy of the rigid body to the point this 
condition makes no sense in the classical meaning. 
The contours of the streamlines covering the 
singularities, considered as the contours of bodies 
for constructing examples of trapped modes. The 
condition 0/ =∂∂ nϕ  is satisfied on these contours 
due to the fact that they are free streamlines inside 
fluid and on which have no pressure drop. 
In general, it is possible to build such kind of 
trapped modes for a given contour or configuration 
of bodies by a selection of parameters and geometry 
of singularities. However any condition for n∂∂ /ϕ  
does not make sense for the classical functions at 
points of non-smooth contact of body and fluid 
boundaries. We may notice that the condition (23) is 
satisfied on the boundary with zero pressure, and on 
the boundary with a nonzero constant pressure 
excepting the boundary points. This condition is also 
indefinite at the points of singularities location when 
they are distributed on the free surface. In all cases, 
the boundary conditions in the classical formulation 
of problems are satisfied everywhere except for a set 
of points of function discontinuities and their 
derivatives. The non-uniqueness of solutions of 
boundary value problems in the classical 
formulation may be a result of indefinite 
characteristics of singularities on these sets of breaks 
and their geometry. 
The use of generalized functions eliminates the 
problem of non differentiability of classical 
functions. The correct interpretation in generalized 
functions of the physical meaning of discontinuities 
of functions is needed for studying and resolving the 
problem of non-uniqueness of solutions of boundary 
value problems in the linear wave theory. 
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