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Introduction  
 Potential flow theory is widely used in ocean 
hydrodynamics. With the great progress achieved so far, 
the weakness of the conventional potential flow model 
was also found for some special problems. One of the 
typical examples is the gap resonance, where the 
unexpected extremely large wave amplitude in the narrow 
gap, confined by the floating structures arranged side-by 
side, is predicted by the conventional potential flow 
model. The over-prediction of wave amplitude by the 
potential flow model near the resonant frequency is also 
observed for the liquid sloshing in a container. As far as 
ship motions in ocean wave are concerned, the rolling 
damping remains still great challenge for the potential 
flow theory. Empirical coefficients associated with the 
rolling damping are generally required in practical 
applications in order to make reasonable predictions of 
ship motions.  
 The gap resonance, sloshing and rolling problems 
mentioned above present a common characteristic, that is, 
the physical dissipation plays an important and critical 
role. However, the conventional potential flow model is 
based on two basic assumptions of irrotational flow and 
inviscid fluid, which means that the physical dissipation 
in the fluid flow has to be totally ignored. Therefore the 
conventional potential flow model becomes invalid for 
the cases with significant mechanical energy dissipation. 
In the context of viscous fluid flow with incompressibility, 
on the other hand, the mechanical energy dissipation can 
be described by the dissipation rate function from the 
energy equation,  

2 ij ijs sμΨ =  (1) 
where μ stands for the fluid viscosity and sij = 0.5 
(∂ui/∂xj+ ∂uj/∂xi) for the strain rate tensor with ui the flow 
velocity component. Eq. (1) denotes the work rate 
dissipated in unit volume, having a dimension of [JS-1L-3]. 
The dissipation function can be re-formulated by 
subtracting the continuity equation 2(∂ui/∂xj)2 = 0, which 
leads to[1] 

2 4 u v u v
y x x y

μω μ
⎛ ⎞∂ ∂ ∂ ∂

Ψ = + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
  (2) 

for the two-dimensional situation, where ω is the vortice 
and u, v the velocity components in the 2-D case.  

As for the potential flow, the vortices are definitely 
zero. Furthermore, if the fluid is ideal, no dissipation is 
produced since the viscosity is zero. However, if we 
consider the special case of irrotational (potential) flows 
of viscous fluids, that is, the viscous potential flow, the 

dissipation function might be not zero since the second 
term in the right hand of Eq. (2) has to be retained. Note 
that the viscous fluid flow can be irrotational flow [2]. 
Considering the Helmholtz Theorem, that is,  
u = ∇Φ + v (3) 
where u is the velocity vector, Φ the velocity potential, 
giving ∇Φ the irrotational velocity and v the rotational 
part of the velocity, Joseph et al (2006)[3] presented the 
integral dissipation function in space 
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 The above dissipation function with Helmholtz 
decomposition shows that the energy dissipation is 
composed of three parts. The first one purely results from 
the potential flow (irrotational velocity components) Θp = 
2μ ∫Ω Φ, ij Φ, ij dΩ and the second part comes from the 
rotational velocity components, Θv = 0.5μ ∫Ω (vi, j +vj, i)2 

dΩ while the third part due to the coupling effect of 
potential flow and rotational flow gives rise to Θp~v= 2μ 
∫Ω (vi, j + vj, i) Φi, j dΩ. Eq. (4) indicates clearly that the 
potential flow of viscous fluid is able to partially consider 
the mechanical energy dissipation although the potential 
dissipation might be limited for the real-life problems.By 
using the Gauss theorem and considering the boundary 
conditions of potential flow of viscous fluids, the 
potential dissipation Θp can be transformed to the 
boundary integral[4],  
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Where un = ∂Φ/∂n, uτ = ∂Φ/∂τ with n and τ the unit 
vectors in normal and tangent directions, respectively, and 
sf stands for the free surface boundary. Eq. (5) indicates 
that the energy dissipation of viscous potential flow 
appears along the free surface, which can be regarded as 
the theoretical foundation for our previous method by 
introducing damping term on the free surface for the gap 
resonance problem [5, 6]. It should be pointed out that the 
governing equations of mass conservation and 
momentum conservation are the same for the potential 
flows of both ideal fluid and viscous fluid, i.e., the 
Laplace equation and Bernoulli equation. The details of 
the viscous potential flow theory can be found in Ref. [4].  



 The introduction of the concept of viscous potential 
flow provides us a feasible approach to consider the 
dissipation in the frame of potential flow theory. However, 
the energy dissipation in realistic flows may involve 
significant vortical (rotational) contributions, and the 
dissipation will not be restricted to the free surface. 
Therefore, it is necessary to know well where dissipation 
mainly appears and how much dissipation is for a special 
problem. This is the main issue of the present work by 
examining the rolling dissipation in fluid. In the 
following section, the dissipation of a rotationally 
oscillating square box in viscous fluid will be examined 
by the CFD simulations. We consider one submerged box 
first and one floating box with free-surface effect as 
another case.  

Submerged box rolling in closed container 
 The governing equation is the two-dimensional 
Navier-Stokes equations for incompressible viscous fluid 
in the Arbitrary- Lagrangian-Eulerian frame, 
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where ui and cj are the fluid velocity and mesh velocity 
components corresponding to the i-th Cartesian 
coordinate xi (i=1, 2 for the present 2-D problem), p the 
pressure, t the time and the liquid density ρ = 1000 kg/m3 
is used in this work. For the purpose to understand well 
the influence of fluid viscosity the heavy dynamic 
viscosity μ = 10.0 kg/m⋅s is adopted here. A rectangular 
box with square cross-section in x-o-y plan (with side 
length D =1.0 m) is placed in a closed square container 
fully filled with liquid. The rolling motion of the square 
cylinder is described by the forced rotational oscillation 
with respect to its centre, coinciding with the centre of the 
container.  
( ) ( )0 sin 2t ftθ θ π=  (8) 

where θ is the time-dependent rotational angle in radian,  
θ0 the amplitude and f the frequency in Hz. A sketch 
definition for the submerged square cylinder in a typical 
computational domain 40D×40D is shown in Fig. 1.  

 
Fig. 1 Sketch definition of submerged rolling box 

 The no-slip boundary condition is applied on the 
solid wall, including the box surface and container 

boundary and a zero reference pressure is imposed at the 
down-right corner of the container. 
 The numerical model is firstly verified with different 
grid resolutions. It is confirmed that the computational 
meshes is fine enough, giving that the numerical results 
are free from the mesh density.That means the numerical 
dissipation is ignorable comparing with the physical 
dissipation. The influences of container size, fluid 
viscosity, rolling amplitude and frequency on the mean 
energy dissipation rate, denoted by Ξ, are concerned, 
which is evaluated as 
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where T1 and T2 is the integral time scale covering the 
stable state. Three different container sizes, measured by 
the container side length L = 20D, 40D and 60D, are 
examined with fixed rotation frequency f = 1.0 Hz and 
amplitudeθ0 = 0.1 rad. The numerical results show that 
the mean energy dissipation rates in the whole fluid 
domain confined by the different container sizes hold the 
same value of 6.255 J/s. This suggests that wall effects 
from the container on the dissipation can be neglected for 
the present numerical set-up, in other words, the 
dissipation rate induced by the container boundaries 
approaches to zero, giving the reasonable assumption 
with infinite computational domain. Therefore, the 
medium container size L = 40D×40D is adopted as the 
benchmark for the following computations.  
 As mentioned previously, one of the concerned 
issues for the dissipation is to get know where the 
dissipation takes place. We evaluated the mean 
dissipation rate in several square regions with respect to 
the rotation centre, i.e., Ls = 1.0D, 1.6D, 2.0D, 3.0D, 4.0D, 
10.0D, 20.0D, 30.0D and 40.0D, referring to the 
definition in Fig. 1. The other computational parameters 
include μ = 10 kg/m⋅s, ρ = 1000 kg/m3, θ0 = 0.1 rad and 
f∈ [0.1, 1.0] with an increment of 0.1 Hz. As shown in 
Fig. 2, the increase in the area of the sub-domain does not 
increases the dissipation rate significantly. That means 
the mechanical energy dissipation mainly happens in the 
near region of the rolling box. Careful examinations 
indicate that the area of 3.0D×3.0D may account for more 
than 90% dissipation of the whole fluid domain for the 
present cases. Fig. 2 suggests also that the dissipation rate 
increases approximately in parabolic with the rolling 
frequency at constant rolling amplitude, which means the 
higher frequency gives the larger dissipation.  

 
Fig. 2 Variation of mean dissipation rate with rolling 

frequency within different sub‐domain size 
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 Fig. 3 presents the comparisons of the dissipation 
rates under various rolling amplitudes. The mean 
dissipation rate is evaluated in the typical two 
sub-domains of 3.0D×3.0D and 20.0D×20.0D. It can be 
seen that the rolling amplitude has significant influence 
on the mean dissipation rate. For a particular frequency, 
the larger rolling amplitude gives rise to the higher 
dissipation at a rate larger than linear increase.  

 
Fig. 3 Comparison of mean dissipation rate under different 

rotation amplitude 

 Fluid viscosity is expected to play important role in 
the mechanical energy dissipation, which is examined in 
Fig. 4 by considering the various viscosities at constant 
rolling amplitude θ0 = 0.1 rad and frequency f = 0.4 Hz. 
This figure shows that the total dissipation in the fluid 
domain does not behave a linear increase with the fluid 
viscosity although the viscosity in Eq. (1) presents in 
linearity. Fig. 4 implies the importance of velocity 
gradient (mainly accounted by the vortices).  

 
Fig. 4 Influence of fluid viscosity on dissipation 

 Based on the CFD numerical results the correlation 
between the dissipation and vortices are examined in Fig. 
5 for typical θ0 = 0.15 rad and f = 0.1 Hz. It can be 
observed that the total dissipation shown in Fig. 5 (left), 
by using Eq. (1), mainly appears in the near region of the 
rolling box and the most significant energy dissipations 
appear around the sharp corners. The dissipation resulted 
from the vortex motion in Fig. 5 (middle), evaluated by 
the first term of the right hand of Eq. (2), presents the 
similar scenery to that of Fig. 5 (left). The further 
examination in quantity indicates that the vortices 
dissipation accounts for most of the total dissipation. 
From Fig. 5 (right), it is confirmed that the vortices 
mainly develop from the solid wall and the sharp corners. 
The numerical results shown in Fig. 5 suggest that the 
dissipation induced by the vortical flow has to be 
modeled in order to use the viscous potential flow theory 
to successfully describe the rolling damping. Two points 
should be addressed, 1) the physical dissipation should be 

introduced near to the rolling structure and 2) the 
appropriate dissipation amount should be used. One 
feasible method for the former topic might be the 
dissipative surface idea proposed by Chen et al (2011) [7] 
while the latter one can be estimated by using the CFD 
simulations as described in this work.  

 
Total dissipation  Vortical dissipation    Vortices contour

Fig. 5 Contours of dissipation rates and vortices 

Floating box on free surface 

 By using the Navier-Stokes solver involving 
two-phase fluids, the rolling dissipation with free surface 
was simulated, where the liquid-gas interface is capture 
by the Volume of Fluid method. For the purpose of 
comparison, the computational domain, box size, 
rotationally oscillating amplitudes and frequencies are set 
to be as close as those in the previous section. The 
container is partially filled with liquid in a depth of 20D, 
i.e., half of the vertical dimension. The viscosities and 
densities used in the computations for the liquid and gas 
phases are μL= 10.0 kg/m⋅s, ρL = 1000 kg/m3 and μA= 10-5 
kg/m⋅s, ρA = 1.0 kg/m3, respectively.  
 The time-series of wave elevations recorded at x = 
1.0m, 5.0m, 10.0m and 20.0m, respectively, are shown in 
Fig. 6 for the case with f = 0.5 Hz and θ0 = 0.1 rad. It 
shows that the wave amplitude decreases with the 
increase in the distance. At x = 10 m, the wave amplitude 
approaches to 1/6 of that at x =1.0 m and the wave energy 
is totally damped out at x = 20.0 m. The further 
examinations show that the higher oscillating frequency 
leads to the faster decrease in the wave height with the 
distance.  

 
Fig. 6 Time series of wave elevation at different position   

 Eq. (2) suggests that the total dissipation rate 
consists of two parts, i.e., the first term and the second 
term on the right hand, which are denoted by the vortical 
dissipation rate and the other dissipation rate, respectively. 
The time evolutions of dissipation rates in the whole 
domain are examined in Fig. 7, for the case of f = 1.0 Hz 
and θ0 = 0.1 rad, where the space integral over both the 
liquid and gas phases are involved. Since the gas 
viscosity is much smaller than the liquid, it is confirmed 
to have rather limited contribution to the total dissipation. 
It can be seen that the total dissipation rate (∫ΩΨdΩ) is 
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mainly resulted from the vortical flow (∫Ωμω2dΩ). For the 
present case the dissipation rate induced by the second 
term of Eq. (2), i.e., ∫Ω 4μ (uyvx−uxvy) dΩ, accounts for 10% 
of the total dissipation rate, in which both potential and 
vortical dissipations and their coupling effects are all 
involved according to the previous mentioned Helmholtz 
decomposition in Eq. (4). 

  
Total;           Vortical;           Others 

Fig. 7 Time series of dissipation rates in the whole domain 

 Following the previous examinations, the mean 
dissipation rates in various sub-domains with different 
square size are compared in Fig. 8, which is helpful to 
determine the most significantly dissipative region. The 
rotational amplitude and frequency considered here are 
1.0 Hz and 0.1 rad, respectively. Note that the square 
sub-domains with side length Ls cover both of the liquid 
and gas regions and the three types of mean dissipation 
rate are considered. The numerical results show that the 
mean total dissipation, evaluated directly from Eq. (8), 
increases with the sub-domain size. However, as Ls > 15 
m, that is, 15D in this work, the total mean dissipation 
rate approaches constant.  That means the physical 
dissipation is mainly restricted in the scope of 15D×15D, 
which is much larger than the previous examined cases of 
submerged rolling box due to the presence of free surface. 
Again, the dissipation is observed to be mainly induced 
by the vortical flow. However, the mean vortical 
dissipation rate shows little dependence on the 
sub-domain size. As the sub-domain is large enough, the 
other dissipations account for nearly 25% of the total 
dissipation.  

 
Fig. 8Mean dissipation rate in different sub‐domain 

 The influence of rotational frequency on the mean 
dissipation rates in the whole domain are examined in Fig. 
9 by considering the typical example with θ0 = 0.1 rad. It 
was found that at the lower frequencies the mean 
dissipation rate associated with the second term in Eq. (2) 
is very small while the total mean dissipation rate is 

almost the same as that from the vortical flow. With the 
increase in the frequency, the three dissipation rates 
increase gradually, and the difference between the total 
dissipation and the vortical dissipation becomes evident, 
which means the dissipation induced by the third term of 
Eq. (2) plays more and more important role at the higher 
oscillating frequencies.  

 
Fig. 9 Dependence of dissipation rate on rolling frequency 

Conclusion 

 For the purpose to introduce dissipation in potential 
flows to deal with the near resonant problems in ocean 
engineering, we have performed analyses on the 
dissipation in viscous fluid and investigated quantitatively 
different components in the case of rolling boxes by using 
the CFD method. Two cases relative to one submerged 
box and one floating box at the free surface have been 
considered. The numerical results of dissipation rates 
associated with different components by varying rolling 
frequency and amplitude highlight that the major 
dissipation is contributed by fluid vortices in the region 
close to boxes. Further studies are needed to quantify the 
linear and quadratic coefficients of dissipation associated 
with rolling speed. 
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