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Rogue waves are unexpected large and spontaneous waves that can occur on the surface of
calm sea and during severe storm. In this study a nonlinear Schrodinger equation governing
the complex envelope of a surface water wave train propagating on an uniform vertical shear
current is used (Thomas R., Kharif C. & Manna M., 2012). As a result it is shown that
the vorticity modifies significantly the properties of rogue wave, namely their lifetime and
height. In the presence of a shear current co-flowing with the waves it is shown that the
height of the rogue waves is increased whereas the lifetime is decreased. Just the opposite,
for a counter-flowing current, the height and lifetime are reduced and increased, respectively.

I. INTRODUCTION

Rogue waves are among the wave naturally
observed by people on the sea surface that repre-
sent an inseparable feature of the Ocean. Rogue
waves appear from nowhere, cause danger, and
disappear at once. They may occur on the sur-
face of a relatively calm sea and not reach very
high amplitudes, but still be fatal for ships and
crew due to their unexpectedness and abnormal
features. A wave is considered as a rogue wave if
its height Hr is more than twice the significant
height Hs. For a Gaussian sea and a narrow
band spectrum, the significant height Hs = 4σ,
where σ is the standard deviation of the ele-
vation. Rogue wave can be generated by dif-
ferent mechanisms such as wave-current interac-
tion, geometrical or dispersive focusing, modu-
lation instability (the Benjamin-Feir instability),
soliton collison, crossing seas, etc. In this study
we consider rogue waves due to modulational in-
stability. Several studies have been carried out
on the propagation of surface water waves propa-
gating steadily on a rotational current ([2, 5, 6]).
Few papers have been published on the effect
of a vertical shear current on the Benjamin-Feir
instability of a Stokes’ wave train in the pres-
ence of uniform vorticity. Johnson [3] studied
the slow modulation of a harmonic wave on a
two dimensional flow of arbitrary vorticity. Us-
ing the method of multiple scale he obtained the
condition of linear stability for a plane nonlin-
ear wave. This condition is verified if the prod-
uct of the dispersive and nonlinear terms of the
nonlinear Schrodinger equation (NLS equation)
is negatif. The instability properties of weakly
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nonlinear wave packet to three dimensional per-
turbations have been studied by Oikawa et al.
[4]. Their analysis were illustrated for the case
of a linear shear. The Benjamin-Feir instability
of a wave train propagating on positive and neg-
ative shear currents have been studied by Choi
[1]. For a fixed steepness, he found that the en-
velope of the modulated wave train grows faster
in a positive shear current and slower in a neg-
ative one. Thomas et al. [7] using the method
of multiple scales derived a vor-NLS equation in
finite depth when the vorticity is taken into ac-
count. They carried out a stability analysis of
a weakly nonlinear wave train in the presence
of uniform vorticity. They demonstrated that
vorticity modifies significantly the modulational
instability properties of weakly nonlinear plane
waves, namely the growth rate and nabwidth.
They shown that these plane wave solutions may
be linearly stable to modulational instability in-
dependently of the dimensionless parameter kh.
Using the Benjamin-Feir Index (BFI) concept,
they demonstrated that the number of rogue
waves increases in the presence of a shear cur-
rent co-flowing with the wave whereas it is the
opposite for a counter-flowing current. We con-
sider the vor-NLS equation derived by Thomas
et al. [7] to investigate the properties of rogue
waves in the presence of vertical uniform shear
current, namely their lifetime and amplification.

II. THE VOR-NLS EQUATION

Generally in coastal and ocean waters, the ve-
locity profiles are varying with depth due to the
bottom friction and surface wind stress. For ex-
ample, tide currents may have an important ef-
fect on the propagation of waves and wave pack-
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ets. Surface drift of the water induce by wind
can also affect their propagation due to the ve-
locity in the surface layer. The velocity field can
be decomposed into a rotational term and an ir-
rotational term which correspond to the induced
wave velocity (the wave motion is assume to be
potential). The fluid is inviscid and incompress-
ible. Hence, the Kelvin-Lagrange theorem states
that the vorticity is conserved.

V = Ωyi+∇φ(x, y, t) (1)

The wave train move along the x axis, the y
axis is oriented upward and gravity downward.
The water depth h is constant and the bottom is
located at y = −h. Ω represents the magnitude
of the shear and φ the velocity potential due to
the wave.

A. Governing equations

The governing equtions are :
∇2φ = 0,−h < y < η(x, t)
φy = 0, y = −h
ηt + (Φx +Ωη)ηx − Φy = 0
Φt +

1

2
Φ2
x +

1

2
Φ2
y +ΩηΦx + gη − ΩΨ = 0

where Φ means that φ is calculated on the
free surface and η the free surface elevation.
Using the Cauchy-Riemann conditions, the
dynamic boundary condition may be rewritten
as follows :

Φtx +Φtyηx +Φx(Φxx +Φxyηx) + Φy(Φxy +Φyyηx)

+ΩηxΦx +Ωη(Φxx +Φxyηx) + gηx +Ω(Φy − Φxηx = 0

B. The multiple scale analysis

We present briefly the derivation of the NLS
equation by using the method of multiple scales
(for more details see Thomas & al. 2012 [7]).

φ =
+∞
∑

n=−∞

φnexp[in(kx− ωt)], (2)

η =

+∞
∑

n=−∞

ηnexp[in(kx− ωt)], (3)

where k is the wavenumber of the carrier and
ω its frequency. Then φn and ηn are written in
perturbation series

φn =

+∞
∑

j=n

ǫjφnj , (4)

ηn =

+∞
∑

j=n

ǫjηnj , (5)

with ǫ the small parameter corresponding to the
wave steepness of the carrier.

We seek a solution modulated on a slow time
scale τ = ǫ2t and slow space scale ξ = ǫ(x− cgt)

η(x, t) =
1

2
(ǫa(ξ, τ)exp[i(kx−ωt)]+ c.c)+O(ǫ2)

(6)
With cg the group velocity of the carrier

wave. The new system of governing equations
becomes :

ǫ2φξξ + φyy = 0,−h < y < η(x, t)

φy = 0, y = −h

ǫ2ητ − ǫcgηξ + ǫ2Φξηξ + ǫΩηηξ − Φy = 0

ǫ3Φξτ − ǫ2cgΦξξ + ǫ3Φyτηξ − ǫ2cgΦξyηξ

+ ǫ3ΦξΦξξ + ǫ3ΦξΦξyηξ + ǫΦyΦξy + ǫΦyΦyyηξ

+ ǫ2ΩηξΦξ + ǫ2ΩηΦξξ + ǫ2ΩηΦξyηξ + ǫgηξ

+ΩΦy − ǫ2ΩΦξηξ = 0

Substituing the expansion for the potential
φ and the free surface elevation η lead to the
nonlinear Schrodinger equation (after a tedious
development to the third order) :

iaτ + Laξξ +N |a|2a = 0 (7)

where

L =
ω

k2σ(2 +X)
µ(1− σ2)[1− µσ + (1− ρ)X]− σρ2

M =
−ωk2(U + VW )

8(1 +X)(2 +X)σ4

U = 9− 12σ2 + 13σ4 − 2σ6 + (27 − 18σ2

+ 15σ4)X + (33− 3σ2 + 4σ4)X2 + (21 + 5σ2)X3

+ (7 + 2σ2)X4 +X5

V = (1 +X)2(1 + ρ+ µΩ) + 1 +X − ρσ2 − µσX

W = 2σ3 (1 +X)(2 +X) + ρ(1− σ2)

σρ(ρ+ µΩ)− µ(1 +X)
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FIG. 1: Stability diagram. S: stable, U: unstable.
(Thomas et al. (2012) [7])

with

µ = kh

σ = tanh(kh)

ρ =
cg
cp

Ω =
Ω

ω

X = σΩ

III. STABILITY ANALYSIS

A solution of equation (7) can be expressed
using a Stoke wave :

a = a0exp(iNa0τ) (8)

A linear stability analysis gives the stability
criterion for a Stoke’s wave :

L(−2Na20 + l2L) ≥ 0 stable (9)

L(−2Na20 + l2L) < 0 unstable (10)

The stability domain is plotted in figure 1 as
a function of σΩ and kh.

There are two critical values as a function of
the vorticity and the water depth. Indeed for
a value of σΩ < −2/3 which correspond to a

vorticity Ω = −2
√

kg
3
, Stoke’s waves are stable.

When there is no vorticity (Ω = 0) Stoke’s waves
are stable for kh < 1.363. Note that for three di-
mensional motion there are oblique modulations
even when kh < 1.363.

IV. APPLICATION TO ROGUE WAVES

In the previous section a development to
third order and a stability analysis have been
performed to investigate the influence of the vor-
ticity on the Benjamin-Feir instability of Stoke’s
waves (see [7] for more details). In this section
we consider the nonlinear evolution of the unsta-
ble infinitesimal perturbations within the frame-
work of the vor-NLS equation. A series of nu-
merical simulations of the vor-NLS equation is
performed for different values of the wave steep-
ness of the carrier wave, the water depth and the
vorticity. The nonlinear stability analysis is de-
veloped for constant vorticity varying from −0.4
to 0.4 and for kh = ∞ or kh = 2. Due to the lim-
itation of the NLS equation to weakly nonlinear
wave trains we choose ak = 0.05 and ak = 0.10.
The wave number of the carrier wave is k = 10
and that of the perturbation is l = 1.
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FIG. 2: Evolution of the normalized maximum ampli-
tude as a function of time. In infinite (a) and finite
(b) depth. Thick continuous line corresponds to 0
vorticity, thin continuous one to 0.2 and thin dashed
line to −0.2.
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The normalized maximum amplitude evolu-
tion as a function of time is shown in figure 2
for three different values of the vorticity (−0.2,
0 and 0.2). In both, finite and infinite depth,
increasing the vorticity increases the maximum
amplitude of the perturbation but decreases the
width of the peak. To have a rogue wave event,
the lifetime has been evaluated for a amplitude
higher than two times the initial amplitude of
the Stoke’s wave.
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FIG. 3: Evolution of the life time and the maximum
amplitude as a function a vorticity in infinite (a) and
finite (b) depth.

Figure 3 shows the evolution of the lifetime
and normalized maximum amplitude of the en-
velope as a function of the vorticity. In infinite
(fig.3.a) and finite depth (fig.3.b) increasing the
vorticity, increases the maximum amplitude but
decreases the lifetime of the rogue wave. In fig-
ure 3.b the Stoke’s wave is stable for values of
vorticity lower than −0.2. This explain why the
lifetime and maximum amplitude for negative
values of vorticity are lower than those without
vorticity, the instability is just high enough to
be defined as a rogue wave.

V. CONCLUSION

Using a 1D nonlinear Schrodinger equation
in the presence of a vertical shear current of
non zero constant vorticity in finite and infinite
depth, we have shown that the lifetime and max-
imum amplitude of rogue waves are significantly
influenced by a vertical shear current. For a
counter-flowing current the lifetime of a rogue is
increased whereas the height is decreased. The
opposite situation is observed for a co-flowing
current. This study is still in progress, to take
into account the influence of wind by introducing
the Miles’ mechanism.

[1] W. Choi. Mathematics and Computers in Simu-
lation, 80:101–110, 2009.

[2] R. A. Dalrymple. Journal of Geophysical Re-
search, 79:4498–4504, 1974.

[3] R. S. Johnson. Proceeding of the Royal Society
A., 347:537–546, 1976.

[4] M. Oikawa, K. Chow, and D. J. Benney. Studies
in Applied Mathematics, 76:69–92, 1987.

[5] A. F. T. D. Silva and D. H. Peregrine. Journal
of Fluid Mechanics, 195:281–302, 1988.

[6] J. A. Simmen and P. G. Saffman. Studies in Ap-
plied Mathematics, 73:35–57, 1985.

[7] R. Thomas, C. Kharif, and M. Manna. Physics
of Fluids, 24, 2012.


