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INTRODUCTION 
With increasing demands for energy and goods, various types of floating structures face expansion of 
scale and working environment, i.e. extended spar or TLP for ultra-deep water, various offshore platforms 
for arctic, very large container ships, multiply connected floating breakwaters and wave energy 
converters. Corresponding to the expansion of scale and environment, the floating structures are exposed 
to various problems including resonance, which is induced by deformation of the body and it’s interaction 
with waves or any other offshore loadings such as iceberg impact.  
To resolve the elastic floating body interaction, several methods were suggested: modal expansion 
method for linear waves and direct simulations using FEM-BEM or FEM-FEM combinations. 
Considering that resonance normally occurs at a couple of lowest elastic modes, second order analysis 
may be required to account for the resonance induced by sum-frequency wave force. Contrary to full 
coupling effect by direct simulation, the corresponding computing cost and accuracy issue could be 
drawbacks of the direct simulation.  
As an initiating work to achieve complete second order hydroelastic analysis on time domain, a fully 
coupled time-domain hydro-elastic dynamic analysis is addressed, based on modal expansion method to 
couple with elasticity and Volterra series method to apply second order wave induced loading. The 
methodology can be extended to various applications for irregular waves such as additional coupling with 
mooring system or impact loadings, even with dramatically reduced computing cost. In addition, it can 
generate instantaneous irregular wave-induced loadings acting on the floating body as time series, which 
can be used for global and local stress analysis.  

FORMULATION 
To account for interactions of body deformation, a finite series of elastic modes is regards as sufficient 
basis to represent the deformation. In further, the elastic modes are applied to a general boundary value 
problem as additional modes to solve with rigid body’s six degree of freedom. For the extended modes of 
elasticity, inertia and stiffness components can be obtained by modal analysis, based on diagonalization 
by eigenfunction. 
Assuming a pontoon type floating body as Euler-Bernoulli Beam in Eq. 1, analytic solution of mode 
shapes is given and one can get diagonalized modal inertia, stiffness, and excitation for the modes. A few 
simple geometries have analytic solutions of mode shapes. For arbitrary body, one may get approximate 
modal results from a FEM program. 
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With the additional elastic modes, boundary value problem is extended for body surface boundary 
condition to the elastic modes e .  
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Based on the fully coupled hydro-elastic dynamic coefficients and hydrostatic revision due to elastic 
motions (Kang et al., 2012), time domain hydro-elastic dynamic analysis is developed from Kramers-
Kronig relation.  
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Comparing with rigid body time domain analysis, matrix size is extended to 6 e , and coupling effects 
between elastic motions and rigid motions are given in terms of off-diagonal elements in inertia and 
hydrostatic matrices, and convolution integrals. 
Considering that first several elastic modes normally have natural frequencies outside of linear wave 
spectrum but within range of sum-frequency excitations, it would be needed to apply second order wave 
induced loadings into the hydro-elastic analysis. Under an assumption of small wave slope, perturbation 
method is utilized to solve the second order wave-body interaction problem (Molin, 1979 and Kim and 
Yue, 1989 and 1990). The boundary value problem is given in Eq. 4, based on Kim and Yue 1990. 
Similarly to first order boundary value problem, main difference between rigid body analysis and elastic 
body analysis in second order is also body boundary condition. 
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Starting with second order radiation potential problem for elastic body by separation from combined body 
boundary condition above, one can find that the formulas for the radiation potential-induced hydro-elastic 
dynamic coefficients are identical between first and second order because of similar form of boundary 

condition. However, the relevant frequency (2)  is different and it presents sum and difference 
frequencies of bichromatic incident waves. 
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Therefore, for the second order hydro-elastic dynamic analysis in time domain, added mass for infinite 
frequency and convolution integral terms are same as ones in linear order analysis. 
Contrary to radiation problem, diffraction potential problem is quite complex to solve. First, correct 
second order body boundary velocity should be derived for the diffraction problem, including the elastic 
modes. In sequence, the fully coupled diffraction potential-induced pressures and excitations are achieved 
in the second order hydroelastic analysis. For example, Malenica and Hauteclocque (2012) addressed a 
fixed elastic cylinder case. 
Following definition from Kim and Yue (1990), second order wave excitations are given as 
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which consists of second order potential-induced loading and first order potential-induced quadratic terms. 
Focusing on time-domain based second-order hydro-elastic analysis, among the two remaining terms in 
the second order loadings than the wave excitation, the second order hydrostatic loading, in particular, 
presents that hydrostatic restoring term in Eq. 3 is identical in both of linear and second order analyses. 
Therefore, second order hydro-elastic dynamic analysis in time domain can be conducted for irregular 
waves by adopting the two-term Volterra series after obtaining fully coupled second order wave 
excitations.  
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NUMERICAL RESULTS 
Hydro-elastic dynamic analysis program for a large floating elastic body has been developed in both 
frequency and time domains (Kang et al. 2012). In particular, the calculations include shear forces and 
bending moments at specified sections of the body. The two independently developed programs are cross-
checked to each other. For a case study, a simple pontoon-type elastic barge is investigated with 80 (L) x 
10 (B) x 5 (D) m; four different bending stiffness cases of infinity, 2.56E10 Nm2 (Full EI), 1.28E10 Nm2 

(Half EI) , and 6.4E09 Nm2 (Quarter EI) are investigated with Euler-Bernoulli beam theory, and the most 
flexible two cases compared between linear and second order analyses. A JONSWAP spectrum with 
Hs=5, Tp=10.6, and Gamma=1.6 is used as an input wave spectrum.  
For both of Half EI and Quarter EI cases, resonances occurred at the first elastic modes in second order 
analysis. In case of Quarter EI, it has resonance even in linear analysis due to its relatively low natural 
frequency, and that resonance get more amplified in second order analysis due to sum-frequency force; 
demonstrated in Fig. 2 ~ 4. The natural frequencies about 1.25 rad/sec and 1.77 rad/sec of Quarter EI and 
Half EI are for "dry-hull" natural frequency. After including hydrostatic-stiffness and added-mass effects, 
they changed to about 1.4 rad/sec and 1.68 rad/sec, respectively, as given in Fig. 2.  
 
As a preliminary study, rigid body motion-induced second order excitations are only applied. This is 
practically acceptable unless high accuracy is needed since the elastic-response contribution in the body-
boundary condition of the second-order problem is expected to be an order-of-magnitude smaller than that 
from rigid-body responses. After including the second-order sum-frequency wave loading, the elastic 
responses are significantly increased at the lowest-elastic-mode natural frequency, as can be seen in both 
spectral and time-series analyses. In further study, the complete solution of second order hydro-elastic 
dynamic analysis will be found, especially for the fully coupled second order excitations of a floating 
elastic body. 



 

Figure 1 Confirmation by spectral RAO comparison in linear 
waves 

Figure 2 Spectral comparison between 1st and 2nd 
order for resonance 

 

Figure 3 Time series comparison Half EI Figure 4 Time series comparison for Quarter EI
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