
28th Int. Workshop on Water Waves and Floating Bodies, L’Isle sur la Sorgue 7-10th April 2013

A nonlinear calculations of interfacial waves generated by a moving ship
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Fridtjof Nansen (1897) was the first to give a sufficiently precise, physical description of dead
water so that the phenomenon could be given a scientific explanation. The initial systematics
of the additional resistance on a ship moving in layered waters is credited to V. Wagnfrid
Ekman. He was, by his supervisor Vilhelm Bjerknes, put to perform laboratory experiments
on ship generated internal waves and measure the resulting force, and was able to explain
the observations made by Nansen, see Ekman (1904). Recently, Ekman’s experiments have
been reinvestigated using modern techniques, see Mercier et al. (2011).

Linear theories of internal waves made by a moving point source have been derived, see
Hudimac (1961), Crapper (1967), Keller and Munk (1970) and the references cited in these
papers. They all consider the supersonic case where the source is advancing so fast, that
the internal wake behind the source is a narrow v-shaped pattern. Avital and Miloh (1999)
studied linear internal waves trapped by a moving vessel, basically the dispersion relation
of the wake. Waves generated by a moving source in a two-layer ocean of finite depth have
been studied by Yeung and Nguyen (1999). The dead water problem was also discussed
in Miloh and Tulin (1988). Miloh et al. (1993) gave numerical solutions for the case of a
semi-submersible slender-body (prolate spheroid) moving steadily on the free-surface.

Nonlinear calculations of dead water are scarce. What exists are calculations of the motion
caused by singularities or pressure distributions. Nonlinear calculations of the wake and force
on a realistic body seem to be nonexistent. We note that a nonlinear theory of interfacial
waves generated by moving pressure distributions in super and subcritical conditions has
been explored by Parau et al. (2007) with results presented at the 21st Workshop in 2006.

We shall here present calculations of the dead water problem using a truncated version of
a fully nonlinear method of a two-layer fluid. The interfacial motion is driven by a realistic
body geometry and the force on the body is evaluated. Results are obtained for subcritical,
critical and supercritical motion.

Nonlinear two-layer theory

In three dimensions, we consider fully nonlinear interfacial motion of a two-layer fluid. The
interfacial waves are generated by the motion of a geometry moving along the upper boundary
of the upper fluid. Rigid lids are assumed at the top and bottom of the fluid layer, so there is
no coupling to eventual free surface motion, which, however, can be evaluated subsequently.
We assume potential flow in each of the layers. Let horizontal coordinates be denoted by
x = (x1, x2) and y be vertical coordinate with y = 0 at the interface at rest. Let the
parameters and functions describing the upper fluid be indexed by 1 and the lower fluid
indexed by 0, where ρ1, h1, φ1 denote density, layer depth at rest and velocity potential in
the upper fluid, respectively, and ρ0, h0, φ0 the corresponding quantities in the lower fluid.
Thus, the upper boundary of the upper fluid is located at y = h1 and the lower boundary of
the lower fluid located at y = −h0. The potentials are assumed to be Laplacian.



The interfacial motion is driven by a body moving horizontally along the top of the upper
fluid. The geometry is given by y−h1− δ(x, t) = 0. Assuming a forward motion of the body
with speed U(t) along the x1-axis the kinematic boundary condition reads

VB =
∂φ1

∂n

√

1 + |∇δ|2 = U
∂δ

∂x1

where n denotes the normal pointing out of the body and ∇ = (∂/∂x1, ∂/∂x2) horizontal
gradient.

The interfacial elevation is determined by y − η(x, t) = 0 giving as kinematic condition at
the interface I: ηt = VI = ∂φ1/∂n

√

1 + |∇η|2 where n is the unit normal along the interface
pointing into the upper fluid 1. Balance of the pressure along the interface provides the
dynamic condition obtained by (φ0,I − µφ1,I)t + g′η+ n.l.t. = 0 where φ0,I denotes the value
of the potential in the lower fluid at the position of the interface I and φ1,I value of the
potential in the upper fluid at I. Further, g′ = g(1 − µ) denotes the reduced gravity and
µ = ρ1/ρ0. With n.l.t. we denote all the nonlinear terms which appear from the Bernoulli
equation.

Integral equations

The Laplacian potentials are obtained by use of integral equations. In the upper layer,
and for a position on the body surface B, we obtain the potential on the body surface,
φB = φ1(x, y = h1 + δ(x, t), t),
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which connects φB, φ1,I , VI and VB where the latter is given by the body motion. In (1)
a prime in φ′

B means φB(x
′, y′ = h1 + δ(x′, t), t). The distances r and r1 are given by

r2 = |x−x′|2 + (y− y′)2 and r21 = |x−x′|2 + (y+ y′)2 where in (1) (x′, y′) is on B and (x, y)
along I and B.

The function 1/r + 1/r1 is expanded in the vertical coordinate. For the integral over B we
obtain 1/r + 1/r1 = 1/R + 1/R1 + (δ′ + δ)(∂/∂(2h1))(1/R1) + ... where R2

1 = R2 + (2h1)
2.

The expanded integral equation is inverted by use of Fourier transform (Clamond and Grue,

2001, §6) where 1
R1

= F
−1

[

2π
k
e−ik·x

′
−2kh1

]

is used, F denotes Fourier transform, F−1 inverse

transform, k and k = |k| wave numbers. Following Fructus and Grue (2007) studying free
surface motion we obtain the potential on the body geometry by successive approximations

by φB = φ
(1)
B + φ

(2)
B + ... where
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The integral equation with the evaluation point on the interface I gives similar expressions

for VI = V
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Similar expressions are obtained for the normal velocity WI in the lower layer along I, solving
an integral equation for the potential φ0,I . The interfacial motion is obtained integrating
the Fourier transformed kinematic and dynamic conditions at the interface, i.e. F(η)t =
F(VI) and F(φ0,I − µφ1,I)t + g′F(η) = n.l.t. where right hand sides are obtained solving

V
(1)
I + V

(2)
I + ... = W

(1)
I + W

(2)
I + ... and using the Bernoulli equation. In the present

calculations ρ1/ρ0 = 1 is used and all velocities are scaled by the linear long wave speed c0.

Calculations

The body is represented by the submerged part of an ellipsoid given by (δ/b)2 + (x1/a1)
2 +

(x2/a2)
2 = 1 with δ < 0. Calculations of the interface are obtained with a horizontal

resolution of 500 by 500 nodes in the critical condition (U/c0 = 1) and 1000 by 250 when
U/c0 = 6 (figures 1 and 2). All computations show a region of depression ahead of the body,
an uplift of the interface at the aft of the body and then a wake of waves. Calculations of the
wave resistance are obtained by integrating the pressure force obtained from the Bernoulli
equation over the body surface. A drag coefficient CR is obtained dividing by 1

2ρSU
2 with

S = πa1a2. Figure 2 (right) shows a CR of about 4 times the skin friction (with Re ∼ 2×107).
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Figure 1: Interfacial elevation η/h1 with a1 = 2.1h1, a2 = 0.7h1, b = 0.7h1, U/c0 = 6,
h0/h1 = 6, horizontal domain of 70h1 by 17.5h1; final time 10h1/c0. Final body position
at x1/h1 = 60.6± 4.
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Figure 2: Interfacial elevation η/h1 (left) and wave resistance (right) with a1 = 4h1,
a2 = 1.5h1, b = 0.3h1, U/c0 = 1, h0/h1 = 6, horizontal domain of 35h1 by 35h1; final
time 17h1/c0. Final body position at x1/h1 = 20.4 ± 4. Black curve in right plot:
domain 50h1 by 50h1.
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