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INTRODUCTION 

In the real ocean, density of sea water is actually 

changing with the depth due to the variations in 

salinity and temperature. The two-layer fluid system is 

the simplest model to investigate the internal wave. In 

this system there exists a density discontinuity at the 

interface between the upper and the lower layers, and 

the density is constant in each layer. The internal 

waves will be generated on the interface such as 

solitary wave and periodic wave. For internal solitary 

wave, the wave length is much longer than the 

characteristic length of structure. So the internal 

solitary wave forces acting on ocean structures can be 

simulated by Morison formula (Song, et al. 2011). For 

the harmonic internal waves, the wave length is over a 

wide range. The diffraction/radiation theory should be 

adopted when the characteristic length of structure is 

relative large. 

The multipole expansion method is utilized by 

Cadby and Linton (2000) to investigate wave radiation 

on a submerged sphere. Ten and Kashiwagi (2004) and 

Kashiwagi et al. (2006) developed a linearized 2-D 

diffraction/radiation model, in which boundary 

integral-equation method is implemented in 

frequency-domain. In this model, the Green function 

which satisfied the free surface and interface boundary 

conditions is derived. Nguyen and Yeung (2011) 

derived the unsteady 3-D sources for a two-layer fluid 

of finite depth.  

Teng and Gou(2009) and Gou et al. (2012) 

developed a time-domain numerical method by 

boundary element method to study the diffraction 

problem in a two-layer fluid. In this numerical model, 

the simple Rankine source is used, and the 

complicated wave Green function is avoided to be 

calculated. As the continued work, the wave radiation 

problem in a two-layer fluid is simulated by this 

time-domain method here. The forced oscillation of a 

truncated cylinder in finite depth is considered. 

Comparisons are made with an analytic solution 

derived by Shi and You (2009), which the 

eigenfunction expansion method is used. The 

examination shows that the model gives very steady 

results and has good agreement with the analytic 

solution, and some significant results can be drawn. 

 

NUMERICAL MODEL 

A Cartesian coordinate system is defined with the 

origin in the plane of the undisturbed free surface, and 

the z-axis positive upwards. The densities of the fluids 

in the upper and the lower layers are 1 and 2, 

respectively. Other notations are shown in Fig.1. The 

fluid in each layer is assumed to be inviscid and 

incompressible, and the flow irrotational. Furthermore, 

the motions of the body are relatively small so that the 

linear potential theory is applied.  
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Fig.1 Definition Sketch  

 

The radiation velocity potentials Φ
(1)

 and Φ
(2)

 in the 

fluid domain 1 and 2 satisfy Laplace equation, and 

the linearized boundary conditions are satisfied as 

follows: 
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where 1 2/   , Vn is the velocity of the body. 

In order to avoid the reflection of scatter waves, an 
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artificial damping layer must be utilized to absorb the 

scattered wave. For the two-layer fluid system, a 

damping term is added to both the free surface and the 

internal surface boundary conditions on the outer part. 

 

   
 

( )        1,2
 

 
 

  
 

m m
m

r m
t z

 (6) 

 
   

 

( )       1

(1 ) ( )        2


  


   


   




   



m
m m

m

g r m
t

g r m
t

 (7) 

 

where  
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Here, damping coefficient α and beach breadth 

coefficient β are equal to 1.0. 

The structure considered here is located in the upper 

fluid. Applying the Green’s second identity to Green 

function and radiation velocity potential Φ
(1)

 and Φ
(2)

 

in each layer respectively, we can obtain the integral 

equations: 
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Here, r is the distance between the field and the source 

points, and r2 is the distance between the field point 

and the image of the source point about the sea bed. 

The direct method is used to calculate the solid angle 

(Teng, et al, 2006). The computational field is divided 

by second order isoparametric elements, and two sets 

of linear equations are obtained after the discretization 

to Eqs.(10) and (11). 
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Applying the interface conditions Eq.(2) and the 

velocity potential function  defined by Eq.(8), we can 

get a single set of linear equations as follows: 
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From the above equation, we can find that the velocity 

potential Φ
(1)

 and Φ
(2) 

on the interface have no need to 

be solved in the time matching procedure, and they 

have been replaced by . It makes the time matching 

process easier. The 4
th
-order Runga-Kutta approach is 

used, basing on boundary conditions Eqs.(4), (6) and 

(7). In order to avoid the initial effect a ramping 

function is utilized. 
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where T is the wave period, and Tm=2T in this 

simulation. Then, all the time histories of wave 

elevations on free and internal surface and wave forces 

acting on the body can be calculated.  

 



NUMERICAL RESULTS 

The forced oscillation of a truncated cylinder in a 

two layer fluid of finite depth is considered. The 

sketch is also shown in Fig.1. The cylinder has a 

radius of a=1.0m, and a draft of T =1.0m. The water 

depths of the upper and the lower layers are h1 =1.4m, 

h2=0.6. The densities of the fluids in the upper and the 

lower layers are 1=998.2kg/m
3
 and 2=1027.2kg/m

3
, 

respectively. That means  =0.972.  

In this numerical method, both the free surface and 

internal surface should be meshed. The radius of 

computed field is about 3 in this case, and the length 

of the damping layer 1.5 is included. Here,  is the 

wave length relative to the internal wave mode. The 

computational meshes on the body surface, the free 

surface and the internal surface are shown in Fig.2 

 
Fig.2 Mesh of the computational field. 

 

Surge motion 

The truncated cylinder is forced to oscillate in surge 

direction by the function of x=Asint. A is the 

amplitude of the surge oscillation, and  is the 

oscillation angle frequency. So the velocity of the 

truncated cylinder Vx=A cost. When the unknown 

velocity potentials over truncated cylinder surface are 

obtained, the pressure can be derived from the 

Bernoulli equation, the forces and moments acting on 

the body can be calculated by integrating the pressure 

over the mean body surface. In order to compare with 

the analytical result derived by Shi and You (2009), 

the radiation force of unit oscillation was divided into 

added mass and damping coefficient. In order to 

investigate the hydrodynamic forces in two-layer fluid 

system, the results of single-layer is also shown. 

Fig.3 and Fig.4 show the added mass and damping 

coefficient of surge oscillation. It should be note that 

there are two possible scatter waves with a prescribed 

frequency in a two-layer fluid, which so called the 

surface wave mode and internal wave mode. The 

results presented here are the total action of both the 

two modes. From the comparison with analytic results, 

we can see that the present numerical model by 

time-domain method have good precision. 

Furthermore, the results indicate that the results of 

two-layer fluid are significant compared with the 

results of single-layer in relative lower frequency 

range. The interface elevation at t=9T is shown in 

Fig.5. It can be seen that the wave profile is smooth 

enough, and demonstrated the steady of this numerical 

model.  

 

 
Fig.3 Added mass of surge motion 

 

 
Fig.4 Damping coefficient of surge motion 
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Fig.5 The interface elevation at t=9T 



Pitch motion 

The truncated cylinder is also forced to oscillate in 

pitch direction by the function of y=Asint. Here, A 

and  are the amplitude and angle frequency of the 

pitch oscillation, respectively. The rotation center is 

located on the origin center. 

Fig.6 and Fig.7 show the added mass and damping 

coefficient of pitch motion, respectively. Consistent 

with previous conclusions, the numerical results have 

good agreement with analytic solutions, and the results 

are significant in the relative lower frequency range 

compared with the sing-layer solutions. 

 

 
Fig.6 Added mass of pitch motion 

 

 
Fig.7 Damping coefficient of pitch motion 

 

 

CONCLUSIONS 

A boundary element method was developed to solve 

the linearized wave radiation problem in a two-layer 

fluid system. The simple Rankine source is used to 

form the boundary integral equation in time-domain, 

so the present method can be applied to study the 

instant wave diffraction and radiation problem. 

However, more computational cost is needed in this 

method, because of both free and internal surface must 

be meshed. 

As an example of the computed results, the forced 

oscillations of a truncated cylinder in surge and pitch 

directions were considered, respectively. From the 

comparison with the analytical solutions, it was 

confirmed that the present numerical model can be 

applied to investigate the wave radiation problem in a 

two-layer fluid. By the comparison with single-layer 

fluid, the results show the significant in relative lower 

frequency range. 
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