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In the past years there has been much research work on ”cloaking”, whereby some object is made ”invisible”.
From electromagnetics the topic has been extended to other fields such as acoustics, structural mechanics and,
more recently, hydrodynamics. In the water wave context, ”invisibility” means that the diffracted wave field
is nil in the far-field at all azimuthal angles. This can usually be achieved only at one wave frequency. At the
26th IWWWFB Porter (2011) presented an application to the case of a vertical cylinder, rendered invisible by a
local modification of the bathymetry in an otherwise constant depth ocean. This case was further investigated
by Newman (2012).
In this paper we report a similar study, where a vertical dihedral, at the end of the ECM wavetank, is at-

tempted to be rendered invisible.

Experimental set-up
Our wave flume is about 15 m long and 65 cm wide. In the reported experiments the waterdepth was set at

40 cm. The beach at the end of the tank was removed and a rigid vertical plate was installed, from wall to
wall, at an angle of 60 degrees, thereby achieving a dihedral. In this configuration a first series of regular wave
tests was run, with wave number k mainly in the range π/b through 2 π/b (b being the tank width), meaning
the reflected wave system, in the far-field, consists of two modes: the inline mode and the first sloshing (plus
progressive) mode. The two components were separated by an array of 5 wave gauges over the width of the
tank, set at different inline positions (the same experimental case being run as many times as different positions
were used).
In a second stage an ”invisibility carpet”, consisting in 18 vertical poles, with trapezoidal cross-sections, was

set in front of the dihedral. The same regular wave tests were run, and the reflected inline and sloshing modes
were separated from the wave gauge measurements. Successful ”invisibility” implies that the sloshing modes
vanish and only the inline reflected mode remains.

Numerical determination of the reflected wave system
The problem was formulated within the frame of linearized potential flow theory, and solved numerically

with the COMSOL Multiphysics software. In the dihedral alone case (without the ”invisibility carpet”) a
semi-analytical method, described below, was also used to validate COMSOL’s results.
Due to the wall-sided geometry the linearized velocity potential writes
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where AI is the amplitude of the incoming waves, h the waterdepth, ω the frequency and k the wave number.
The reduced potential ϕ satisfies the Helmholtz equation ∆ϕ+ k2 ϕ = 0 in the fluid domain, no-flow conditions
at the solid walls and appropriate ingoing and outgoing conditions at x → ∞.

Dihedral alone

Figure 1 shows the geometry at the end of the tank. It consists in two overlapping rectangular sub-domains:
– the angular sector 0 ≤ R ≤ 2 d ; 0 ≤ θ ≤ π/3 (inside the green contour in figure 1).
– the semi-infinite strip d ≤ x < ∞ ; 0 ≤ y ≤ b with d = b

√
3/3 (inside the red contour).

Within the first sub-domain the reduced potential ϕ takes the general form:

ϕ1(R, θ) =

∞
∑

m=0
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J3m(kR)

J3m(2kd)
cos 3mθ (2)

with J3m the Bessel function of the first kind.
Within the second sub-domain it can be written as:

ϕ2(x, y) = e−i kx +

∞
∑

n=0

Bn cosλny e−αn (x−d) (3)
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Figure 1: Sub-domains 1 and 2 and control points.

where λn = nπ/b and

αn = −i
√

k2 − λ2
n for n ≤ N2 αn =

√

λ2
n − k2 for n > N2 (4)

N2 being the largest integer n such that λn < k.
The unknown coefficients Am and Bn can be determined by enforcing that the two expressions coincide in the

common region. To this end the series are truncated at orders M and N , Npt (with Npt ≫ M +N +2) control
points (shown as blue square symbols) are distributed over the common region, and the following quantity

E =

Npt
∑
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is minimized.

Figure 2: Coefficients |B0| and |B1| vs kb/π.

Figure 2 shows the moduli of the non-dimensional amplitudes B0, B1 of the propagating modes for 0.5 ≤
k b/π ≤ 2.3, as obtained semi-analytically with this method and as obtained numerically with the Finite Ele-
ment Method of COMSOL. The agreement is excellent.



Invisibility carpet
The trapezoidal end part of the wave-flume is covered with vertical poles of prismatic cross-sections, as shown

in figure 4. The void fraction is close to 50 %, and the ”carpet” extends 1.5 m from the end point of the tank.
These choices are somewhat arbitrary. Keeping constant the void fraction and extension of the carpet, the
number of inclusions in the inline and transverse directions are varied in COMSOL computations.
An efficiency function is defined from the quantity

F =
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n
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where a number of reference abscissas xn are taken, from the edge of the carpet toward the wavemaker. When
there is no carpet F takes the value F0. The efficiency is then defined as F/F0. An efficiency equal to zero
means that the dihedral has been made ”invisible”.

Figure 3: Efficiency function F/F0, for different numbers of inclusions.

Figure 3 shows the obtained efficiencies for 4 different arrangements, and for k b/π in the range 0.8 to 2.2.
It is somewhat puzzling that the most efficient carpet, in the range 1.4 ≤ k b/π < 2.2, is the carpet with the
intermediate number of inclusions (18). This is the carpet that was modeled experimentally. A photograph is
shown in figure 4.

Figure 4: Photograph of the invisibility carpet (left). Calculated wave patterns in the end part of the tank for
3 kb values (right).

Figure 4 (right) shows calculated patterns of the free surface elevation, with and without the invisibility car-
pet, for 3 values of k b/π. The first value (kb/π = 0.635) is below the cut-off frequency, so the wave pattern is
unidirectional in both cases.



Results for the non-dimensional amplitudes B0 and B1, from COMSOL computations, for the 18 inclusions
arrangement, are shown in figure 5, and compared with the dihedral alone case. With the carpet the inline
coefficient B0 takes values very close to 1 all over the kb range, while the B1 coefficient is strongly decreased.

Figure 5: Results from COMSOL computations: B0 and B1 without (full lines) and with (dashed lines) the
carpet.

Figure 6: Results from experiments: B0 and B1 without (full lines) and with (dashed lines) the carpet.

Finally figure 6 shows the experimental B0 and B1 coefficients, as derived from the wave gauges measure-
ments. The agreement with the results in figure 5 is fair in the dihedral alone case. In the carpet case it is only
qualitative. In particular the experimental B0 coefficient, in the low kb range, is much lower than 1, suggesting
that appreciable energy dissipation takes place in the carpet, most likely through viscous effects. Another reason
for discrepancies might be that at low kb values, the wave flume being only about 15 m long, with no active
absorption mechanism, the steady state window is rather short.
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