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Summary

The shallow-water wave theory of Tuck (1966) provides a remarkably simple set of formulas for the
sinkage, trim, and wave resistance of a slender vessel traveling at a steady speed. Tuck (1967) later
extended this work to include the case of a channel of finite width. In the current study, we compare
these predictions of Tuck with the exact finite-channel-width finite-water-depth linearized theory based
on the disturbance of the free surface, as detailed by Doctors (2008). It is shown that the shallow-water
theory provides a good approximation for all three abovementioned quantities at speeds up to those
corresponding to a depth Froude number of about 0.6. However, the shallow-water theory always
provides underpredictions, compared to both the exact theory and with experiments in a towing tank.

1 Introduction

We consider the problem of a ship with length L,
beam B, and draft T , advancing with a steady
speed U in water of finite depth d in a channel
of width w. Principal matters of interest are the
sinkage s, trim t, and resistance R of the vessel.
Of particular concern is whether the vessel will
“ground” or contact the bottom in very shallow
channels. Thus, it is useful to compute the keel
clearance c, when the vessel is underway. Details
of this geometry are shown in Figure 1(a).

Michell (1898) was the first to analyze the hydro-
dynamics of a ship, although his work was limited
to the case of water of infinite depth and with
infinite lateral extent. His essential assumption
regarding the physics is that the vessel should
be “thin”; that is, B/L is to be small. Many
comparisons of the theory with experiments in a
towing tank confirm that the predictions possess
engineering validity for vessels with B/L < 0.25.

Regarding wave resistance, this theory has since
been extended to include the case of a channel
with a finite width, by Sretensky (1936). Finite
water depth was considered by Lunde (1951).

If one is concerned with sinkage and trim, then
it is necessary to also compute the rather more
complicated near-field integrals, as described by
Doctors (2008). Thus, it is of interest to compare
the efficacy of the simpler shallow-water theory
with that of the complete finite-depth theory.

2 Finite-Water-Depth Wave Theory

A summary of the inviscid linearized theory
predicting near-field disturbance created by a
steadily advancing ship was provided by Doctors
(2008). The wave elevation is given by:
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where the dispersion relationship and its deriva-
tive are

f = k2 − kk0 tanh(kd) − k2
y , (2)
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and the fundamental circular wave number is

k0 = g/U2 . (4)

Here, g is the acceleration due to gravity, kx is
the longitudinal wavenumber, ky is the transverse
wavenumber and k is the circular wavenumber.
Finally, the finite-depth wave functions in Equa-
tion (1) are given by the formulas
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V =
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, (6)



Figure 1: Definition of Problem Figure 1: Definition of Problem
(a) Details of Geometry (b) Wireframe View

Figure 2: Three Theories for Sinkage

in which the Michell (1898) deep-water monohull
functions depend on the local beam b(x, z):

P± + iQ± =

∫

S0

b(x, z) exp(ikxx ± kz) dS . (7)

3 Shallow-Water Wave Theory

The approach here is to assume that the water-
depth is sufficiently small, so that the Laplace
(field) equation,

φxx + φyy + φzz = 0 , (8)

can be replaced by the simpler

(1 − F 2
d )φxx + φyy = 0 , (9)

where the depth Froude number is

Fd = U/
√

gd . (10)

Tuck (1967) showed, by applying the x-wise
Fourier transforms to Equation (9), that the wave
elevation could be expressed as
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where the Fourier transform of the sectional-area
curve is

S̃(k) =

∫

L

S(x) exp (−ikx) dx . (12)

The pressure at the local section is directly re-
lated to the wave elevation, so that one can com-
pute the relevant contributions to the longitudi-
nal x force, the vertical z force, and the moment
about the transverse y axis. The resistance, sink-
age, and trim directly follow.

4 Sinkage

The subject of the experiments was a “sim-
ple” model possessing parabolic sections and
parabolic waterlines, as suggested by Wigley
(1934). The model is shown in Figure 1(b).

Figure 2 is a comparison of the theoretical dimen-
sionless sinkage s/L for this model, plotted as a
function of the depth Froude number Fd. Curve 2
through Curve 5 represent the finite-width pre-
dictions, based on Equation (11). It is seen that



Figure 3: Sinkage Figure 3: Sinkage
(a) d/L = 0.1 (b) d/L = 0.25

Figure 4: Trim Figure 4: Trim
(a) d/L = 0.1 (b) d/L = 0.25

the theory approaches the expected limit of the
hydraulic theory (Curve 1) for a narrow channel
w/L = 0.5. Similarly, the desired limit of the
wide-channel theory (Curve 6) of Tuck (1966) is
closely achieved for the case of w/L = 4.

A comparison of the predicted and experimen-
tal sinkage is presented in Figure 3(a) for a
relatively low depth-to-length ratio d/L = 0.1.
Finite-width shallow-water theory represents an
improvement over the wide-shallow-water theory.

Both theories are a good indication of the sink-
age. Nevertheless, the more traditional finite-
width finite-depth (exact theory) is better still.
The case of deeper water, namely d/L = 0.25, in
Figure 3(b) shows that the shallow-water concept
is much less valid in this case.

5 Trim

The trim is depicted in the two parts of Figure 4
for the same two water depths. The shallower
case in Figure 4(a) is particularly interesting,
because both shallow-water theories indicate no
trim, for these subcritical speeds, for this vessel
with fore-aft symmetry.

This is indeed reasonably true in practice, at least
up to Fd ≈ 0.8. The exact theory does provide
a positive trim at higher speeds, in keeping with
observation.

At the greater depth of d/L = 0.25 in Fig-
ure 4(b), the trim is certainly nonzero for Fd >
0.7; the exact theory provides a good prediction
for values of Fd up to about 0.9.



Figure 5: Total Resistance Figure 5: Total Resistance
(a) d/L = 0.1 (b) d/L = 0.25

6 Resistance

Finally, the resistance for the lesser of the two wa-
ter depths is shown in Figure 5(a). Curiously, the
shallow-water theory predicts no wave resistance,
so the only contribution to the total resistance
RT is through the frictional resistance, which was
computed using the 1957 International Towing
Tank Committee (ITTC) formulation, together
with a frictional form factor fF = 1.2.

The resistance is rendered dimensionless by the
vessel weight W . The exact formulation provides
a nonzero wave resistance in Figure 5(a). For the
greater depth in Figure 5(b), the “exact” theory
gives a good indication of the total resistance at
speeds corresponding to almost Fd = 0.9.

7 Concluding Comments

The lowest depth corresponded to a depth-to-
draft ratio d/T of 1.6. It would be instructive to
conduct experiments at lower depths, where the
shallow-water theory will be more applicable.

This study has been confined to the subcritical-
speeds. The nature of the theoretical formula-
tions is substantially different for the supercriti-
cal case — another fruitful area of research.

The tests were performed in the Towing Tank at
the Australian Maritime College (AMC) under
the supervision of Mr Gregor Macfarlane.
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