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We present this paper, in memory of Professor Fritz Ursell, which contains an exercise following

his work on the generalization of steepest descent method in 1960, 1964 and 1968. The potential

flow generated by an impulsive point source at the free surface with surface tension is analyzed

and different asymptotic expressions have been obtained. They include a series expansion for small

time, asymptotic expansion for very large time and uniform asymptotic expansions including Airy

function and its derivative for intermediate and large time.

1 Introduction

The surface tension and fluid viscosity are neglected in the classical potential theory. Green function repre-
senting the velocity potential due to an impulsive disturbance presents a perplexing peculiarity - the surface
elevation in a region approaching to the disturbance is found to oscillate with indefinitely increasing ampli-
tude and indefinitely decreasing wavelength as pointed out in Lamb (1932), Ursell (1960), Clement (1998)
and Chen & Wu (2001). The investigation of Chen (2002) and Chen & Duan (2003) shows that the introduc-
tion of surface tension in the formulation of ship waves eliminates the singularity of ship waves in the region
near the track of the source point at the free surface. This stimulates our study on numerical evaluation of
time-domain capillary-gravity Green function.

We study the potential at the point P (x, y, z) and time instant t′, generated at the point Q(ξ, η, ζ) and
time t by a source of unit impulsive strength δ(t). The time-domain capillary-gravity Green function is the
sum of an impulsive term and a memory part. The memory part is given by Wehausen & Laitone (1964,
eq.24.28) and expressed by a wavenumber integral :

G(P, t′, Q, t) = 2

∫ ∞

0

ek(z+ζ)
J0(kR)

√

gk + (T/ρ)k3 sin[
√

gk + (T/ρ)k3(t− t′)]dk (1)

where R =
√

(x− ξ)2 + (y − η)2 is the horizontal distance between the two points P and Q, g is the
acceleration due to gravity, ρ water density and T surface tension on the air-water interface. J0(·) is the
zeroth-order Bessel function of the first kind. If we use L as a reference length to write the non-dimensional
quantities as

τ = (t− t′)
√

g/L; (c, h) = (z + ζ,R)/L; σ =
√

T/(ρgL2)

the memory part G is written as
G(P, t′, Q, t) = 2

√

g/L3F (c, h, τ) (2)

such that the Green function is written in its dimensionless form :

F (c, h, τ) =

∫ ∞

0

ekcJ0(kh)ω(k) sin[ω(k)τ ]dk with ω(k) =
√

k + σ2k3 (3)

If we take σ = 0, the expression (3) keeps the same form as that of pure-gravity waves.

2 Contour integrals passing through the saddle points

By using the identity J0(kh) = H
+
0 (kh) +H

−
0 (kh) with the Hankel function H

±
0 (kh) = J0(kh) ± iY0(kh)

in (3), we may decompose F = F+ + F− with F+ and F− associated with H
+
0 and H

−
0 , respectively. At

large values of ω(k)τ and kh, the integrand of F+ and F− is of highly oscillatory. The phase function in the
integrand of F+ is ψ+ = ω(k)τ +kh while that of F− is ψ− = ω(k)τ −kh, identified by using the asymptotic
expression of H±

0 (kh) for large kh.

The phase function ψ+ = ω(k)τ + kh does not present any saddle point for ℜ{k} > 0. The integration
path along the real axis of k for F+ can then be deformed to the path along the imaginary axis of k since
the arc integral linking both axis at infinity can be shown to be nil.

Following the work by Chen & Duan (2003) there are two saddle points kg and kT associated with the
phase function ψ− = ω(k)τ − kh in the integrand of F− :

kg = 1/(4v2) +O(σ/v2) and kT = 4v2/(9σ2) +O(σ/v2) for v ≫
√
σ (4)



Figure 1: Integral contour for v > v0 Figure 2: Integral contour for v ≤ v0

where v = h/τ is the wave velocity. When v is of the same order as
√
σ, the wavenumbers kg and kT become

close and in particular, kg = kT = k0 ≈ 0.393/σ for v = v0 ≈ 1.086
√
σ. When v < v0, the wavenumbers kg

and kT are complex. At the limit v = 0, we have kg = −i0.577/σ = −kT .
For v > v0, the double derivatives ∂

2ψ−/∂k2(k = kg) < 0 and ∂2ψ−/∂k2(k = kT ) > 0 so that the steepest
paths through k = kg and k = kT should be those with increments ∆k = |∆k|e−iπ/4 and ∆k = |∆k|e+iπ/4

assuming |c| ≪ 1, respectively. At very large k > kT , any path in the first quadrant is good although the
best is that with increment ∆k = |∆k|e+iπ/3 for k → ∞. Furthermore, the contribution from the end point
at k = 0 is taken account by an integration on a limited segment along the imaginary axis. The integration
paths are depicted on Figure 1 and Figure 2 for v > v0 and v ≤ v0, respectively. The Green function
computed along the paths defined above is used to compare the asymptotic expansions in the following.

3 Series expansions for small τ

By expanding the sine function and
√
k + σ2k3 for small τ and σ, we obtain

F (c, h, τ) =

∫ ∞

0

ekcJ0(kh)
√

k + σ2k3 sin(τ
√

k + σ2k3)dk

=
∞
∑

m=0

m+1
∑

n=0

(−1)mτ2m+1

(2m+ 1)!

(m+ 1)!

n!(m+ 1− n)!
σ2m+2−2n

∫ ∞

0

ekcJ0(kh)k
3m+3−2ndk

Using the identity (6.621) in Gradshteyn & Ryzhik (2007) :

∫ ∞

0

ekcJ0(kh)k
3m+3−2ndk = (3m+ 3− 2n)!P3m+3−2n(cos θ) r

−(3m+4−2n) (5)

where
r =

√

h2 + c2 and cos θ = −c/r
we find that F (c, h, τ) is expressed in the form

F (c, h, τ) =

∞
∑

m=0

m+1
∑

n=0

(−1)mτ2m+1

(2m+ 1)!

(m+ 1)!(3m+ 3− 2n)!

n!(m+ 1− n)!
σ2m+2−2nP3m+3−2n(cos θ) r

−(3m+4−2n) (6)

which can be used for small τ .

4 Expansions for very large τ

At very large time of τ , the behaviors of F (c, h, τ) depend on the contributions of integration in the vicinity
of end points and saddle points. To estimate the contribution from the end points, we change the integral
variable k to ω and rewrite F (c, h, τ) as

F (c, h, τ) = 2

∫ ∞

0

ekcJ0(kh)ω
2/(1 + 3σ2k2) sin(ωτ)dω with ϕ = ψ−/τ = ω(k)− kv (7)



in which the amplitude function of the integrand is expanded at ω → 0 as

ekcJ0(kh)ω
2/(1 + 3σ2k2) = ω2 + cω4 + (−3σ2 − h2/4 + c2/2)ω6 +O(ω8) (8)

Introducing (8) into (7) and using the identity
∫ ∞

0

ωn sin(ωτ)dω = cos(nπ/2)n!/τn+1 (9)

we have
F (c, h, τ) ≈ −4/τ3 + 48c/τ5 + 5!(36σ2 + 3h2 − 6c2)/τ7 +O(τ−9) (10)

The expression (10) representing the contribution from the end point at k = 0 for very large τ should be
added to the contributions from saddle points which are now developed below.

5 Uniform asymptotic expansions

For the large value of h and τ , the dominant contribution comes from the saddle points in the integrand of
F−(c, h, τ) and we write (3) in the complex form :

F (c, h, τ) ≈ F− = ℑ
{
∫ ∞

0

ωekc+πi/4

√
2πkh

eiτϕ(k,v)dk

}

with τϕ(k, v) = ψ−(τ, h, k) (11)

To develop an uniform asymptotic expansion, we use the method of Chester, Friedman & Ursell (1957) and
define a cubic transform of the variable of integration k to u

iϕ(k, v) = i(ω − kv) = −(u3/3− γ2u) + ρ (12)

it follows that

F (c, h, τ) ≈ ℑ
{

eτρ
∫ ∞e4πi/3

∞e2πi/3

G0(u, v)e
−τ(u3/3−γ2u)du

}

(13)

where
G0(u, v) =

√

(1 + σ2k2)/(2πh)ekc+πi/4(dk/du) (14)

We then construct a Bleistein sequence to replace the integrand G0(u, v)

G0(u, v) = b0 + b1u+ (u2 − γ2)H0(u, v) (15)

We obtain the uniform asymptotic expansions of F (c, h, τ) for large τ

F (c, h, τ) ≈ ℑ
{

2πieτρ[Ai(τ2/3γ2)b0/τ
1/3 +Ai

′(τ2/3γ2)b1/τ
2/3]

}

(16)

where
ρ = i(ϕ(kT , v) + ϕ(kg, v))/2 (17)

γ =











exp(πi/2){[ϕ(kg, v)− ϕ(kT , v)]3/4}1/3 for v > v0

0 for v = v0

exp(πi){ℑ[ϕ(kT , v)− ϕ(kg, v)]3/4}1/3 for v < v0

(18)

and

b0 =

{

eiπ/4/
√
8πh

(√

1 + σ2k2ge
kgc (dk/du)|u=−γ +

√

1 + σ2k2T e
kT c (dk/du)|u=γ

)

for v 6= v0

e−iπ/4/
√
2πh

√

1 + σ2k20 (2/ϕ
′′′
kkk(k0, v))

1/3
for v = v0

(19)

b1 =

{

eiπ/4/(γ
√
8πh)

(

√

1 + σ2k2T e
kT c (dk/du)|u=γ −

√

1 + σ2k2ge
kgc (dk/du)|u=−γ

)

for v 6= v0

0 for v = v0
(20)

with
dk

du

∣

∣

∣

∣

u=∓γ

=

{

e−iπ/2
√

2 |γ/ϕ′′
kk(kg,T , v)| for v > v0

e−i[π±arg(i/ϕ′′

kk(kT ,v))]/2
√

2 |γ/ϕ′′
kk(kg,T , v)| for v < v0

(21)

The resulting expansion (16) is uniformly valid for a large zone |v− v0| < Mv independent of τ and more
details can be found in Dai and Chen (2012). The pure gravity waves on finite depth due to an impulse have
the similar situation and studied in Clarisse et al. (1995).
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Figure 3: Comparison of asymptotic expansions with contour integrals for (c, h) = (−0.01, 0.5)

6 Summary and conclusions

Based on the above study, F (c, h, τ) can be evaluated by the contour integration along the steepest descent
paths passing through the saddle points. The results by contour integrals are useful to check the asymptotic
expansions. An example of numerical results for τ varying from 0 to 12 at (c, h)=(−0.01, 0.5) is depicted on
Figure 3. The results of contour integral are represented by solid lines while those of the uniform asymptotic
expansions (16) by the symbol of empty circles. The results of series expansions (6) are depicted by the
symbol of empty triangles and those of (10) by the symbol of empty squares. For small and moderate
values of τ , the series expansion (6) gives excellent results. For large values of τ the asymptotic expansions
(10) representing the contribution from the end point at k = 0 and the uniform asymptotic expansion (16)
corresponding to the contribution of saddles points at k = kg and k = kT are very good as well. Finally, at

very large values of τ , the uniform asymptotic expansion (16) is of exponentially small O(e−τ |γ|32/3) so that
asymptotic expansions (10) becomes dominant theoretically but the absolute value remains very small.
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