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The gas-cavity problem with initially high pressure, evolving in a surrounding liquid, and interacting with a near body,
is a very interesting research topic because it involves several physical phenomena and is of practical interest in different
contexts. For instance, underwater explosions represent an important issue for ships and offshore structures. Therefore it
is necessary to predict structural effects and try to improve vessel design. To this purpose, physical tests were performed
along the years and theories were developed (Cole 1948). Another important application is in medical field. Implosion
of micro-bubbles with ultrasound in biological flows is usedwithin a noninvasive technique to remove calculi in human
bodies (Lingemanet al. 2009).

Here we first focus on the first application. When an underwaterexplosion occurs, a chemical reaction and a detonation
process cause the formation of a hot gas with high pressure and the release of a shock wave traveling in the surrounding
fluid. Then a superheated, spherical, bubble is formed whichwill first expand while the high pressure reduces in time
and propagates in the surrounding liquid. Eventually the bubble starts to oscillate and affect the local pressure. In the
first stage (shock wave) both the gas and the surrounding liquid behave as compressible, in the later stages (gas bubble)
the acoustic wave will disappear and the water can be considered incompressible. The interaction of this two-phase fluid
with a body will then depend on the vicinity of the body from the explosion zone and by the presence or not of other
boundaries,e.g. the sea floor, the free surface.

The solution strategy: a time-space domain decomposition

We first assume that the explosion occurs very far from other boundaries and that hydrostatic pressure does not affect
the explosion phenomenon leading to a radial symmetry of thebubble evolution. Initial values of bubble radius, density
and pressure, can be obtained from physical tests. A compressible ’1D’ solver along the radial directionr is then used to
simulate the flow evolution until the first shock wave from theexplosion becomes close to the bottom of a vessel assumed
infinitely extended within the local analysis. This can be done because the problem equations are hyperbolic and so the
presence of the structure will not affect the fluid behind theshock wave. As the shock wave becomes close to the body,
a time-space Domain-Decomposition (DD) strategy is switched on, where a compressible 3D solver is initiated by the
simplified ’1D’ solution in an inner region affected by the body and used to investigate the fluid-body interactions. The
’1D’ solution is still applied far from the structure and provides the boundary conditions to the 3D solver along a control
surface bounding the inner domain. This implies a one-way coupling. The DD limits the computational costs which are
quite high if a compressible 3D solver is used for the whole simulation and everywhere due to the limits in the time step
connected with the local speed of sound in the fluid. In case ofan explosion very close to boundaries, this DD cannot be
applied. The main features of the methods involved in the DD are briefly described next.

’1D’ compressible solver for multi-phase flows Assuming radial symmetry, the problem (in general governedby the
later equation (3)) can be studied as one-dimensional in ther direction with formal Euler equation

∂U

∂t
+

∂F

∂r
= S , (1)

with U = [ρ, ρu,E]T , F = [ρu, ρu2, (E + p)u]T andS = 2[ρu/r, ρu2/r, u(E + p)/r]T . Hereu is the radial velocity,p
the pressure andE the total energyρ(e+u2/2). For the closure of the problem we need an equation of state (EOS) for the
specific internal energye. Here this is assumed of the formρe = ff (ρ)p+gf (ρ) , with the functionsff andgf depending
on the fluid properties. In particular, the JonesWilkinsLeeEOS is used for the gas (Dobratz and Crawford 1985) and an
isentropic Tait relation for the water (Cole 1948),i.e.

fg = 1/ω gg = [−Ag(1− ωρg/(R1ρ0g))e
−R1ρ0g/ρ −Bg(1− ωρg/(R2ρ0g))e

−R2ρ0g/ρg ]/ω
fw = 1/γw gw = (Bw −Aw)γw/(γw − 1)

(2)

Here the subscriptsg andw stand for gas and water, respectively,ρ0g is the initial gas density,γw is the ratio of specific
heats for water and the other parameters are given later. Theproblem is solved in time with a first order scheme using
the HLL approximate Riemann solver (Toro 1999) to estimate the fluxesF in each fluid and enforcing a two-shock



approximation to the Riemann problem at the interface as proposed by Liuet al. (2003). The latter provides an exact
solution when a shock wave is reflected and is reliable for gas-gas or gas-water flow. The related equation system is
nonlinear and is solved iteratively with a Newton-Raphson method givingui, pi, ρLi andρRi , respectively, the radial
velocity and pressure at the interface and the left and rightdensity. To avoid possible instability of the solution, the
left and right densities are corrected by enforcing an isobaric condition across the interface. This interface algorithm is
inserted into a ghost fluid method (Liuet al. 2003) providing the conditions across the interface to each fluid. In particular,
say that the interface is between node i and i+1 of the computational grid and that we need to solve for the fluid on the
left. Here we consider that for nodes≥ i the density, velocity and pressure are, respectively,ρLi , ui andpi, and the other
needed quantities are obtained subsequently. Similarly isdone for the fluid on the right. At this stage the fluxesF can be
calculated in each fluid and the problem can be stepped forward in time. The location of the interface is updated using the
velocityui. The solver has been satisfactorily verified against several numerical solutions, for fully 1D problems (in this
caseS = 0 in equation (1)) and problems with radial symmetry.

3D compressible multi-phase solver In 3D, the compressible inviscid flow is represented by the equation
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∂F z

∂z
= 0, (3)

with U = [ρ, ρu, ρv, ρw,E]T , F x = [ρu, ρu2 + p, ρuv, ρuw, (E + p)u]T , F y = [ρv, ρuv, ρv2 + p, ρvw, (E + p)u]T ,
F z = [ρw, ρuw, ρwv, ρw2 + p, (E + p)u]T . Hereu, v, w are the velocity components. As in ’1D’, these equations are
completed by the equations of state described in the previous paragraph. The equations are integrated with a3rd order
Runge-Kutta scheme in time and they are discretized with a2nd order finite differences scheme in space. A level set
functionφ is used to represent implicitly the interface between the two fluids and it is advected in time using the equation

∂φ

∂t
+ V i · ∇φ = 0 (4)

whereV i is the interface velocity calculated as in Liuet al. (2003). To make the solution efficient in time, an adaptive
mesh refinement is used according to MacNeiceet al. (2000). The grid is halved either close to the interface between the
two fluids or in proximity of high gradients of the fluid variablesU . An example of mesh refinement is shown in figure
1, at the starting time of the explosion, close to the interface, the grid size is extremely refined. The refinement grades to
a coarse mesh far from the interesting region.

Figure 1: Example of adaptive mesh refinement close to the gas-water interface.

Fluid-structure interaction problem To estimate the local effects on the bottom of a vessel, as first attempt this has
been modelled as an infinitely extended orthotropic plate, see e.g. Faltinsen (1999). The stresses and strains will be
first evaluated using a quasi-static approach, then the structural and hydrodynamic problems will be coupled to assess
excitation of hydroelasticity.

Preliminary results

The underwater explosion documented by Smith (1999) has been used as a test case to develop and assess the DD ap-
proach. The initial radius of the gas cavity isr0 = 0.16 m and the parameters for the EOS of the fluids, using SI system,
are: ρ0g = 1630.0, p0g = 8.381 · 109, Ag = 3.712 · 1011, Bg = 3.23 · 109, R1 = 4.15, R2 = 0.95, ω = 0.30,



ρ0w = 1025.0, p0w = 1.0 · 106, Aw = 1.0 · 106, Bw = 3.31E8 andγw = 7.5. First the problem has been studied fully
by the ’1D’ solver within the radial-symmetry assumption. Aconvergence analysis has been performed using a compu-
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Figure 2: ’1D’ solution in the radial direction for the studied underwater explosion: pressure distributions at different
time instants. The empty circles indicate the instantaneous radial location of the interface. The triangles are the numerical
results by Smith (1999). For sake of clarity, in the left plotonly the Smith’s solutions at 25, 96 and 257µs, are shown.

tational domain long 10 m and a uniform discretization∆r. The order of accuracyOA (Colicchio 2004) was adopted
as measure, which involves the time integral of the selectedvariable calculated with three discretizations and shouldbe
one for a solver accurate to the first order. In our case, using∆r = 0.00125 m, 1.5∆r ant 2.25∆r and studying the
evolution up to 0.05 s, at a locationr ≃ 44r0, OA was found 1.45, 1.44, 1.32 and 1.56, respectively foru, p, ρ andE. At
the interface, where very complicated phenomena occur,OA is more limited and was found 0.39, 0.80 and 1.10, for the
position of the interface,ri, and forui andpi, respectively. The evolution for the finest grid is shown in figure 2 in terms
of pressure distribution and interface location at different time instants during the initial shock-wave phase. This stage
involves a cavity expansion and is typically associated with a release of more than50% of the energy from the explosion
(Keil 1961). In this example, at first (left) a primary shock wave is caused by the detonation and moves rightwards while
an expansion wave moves toward the bubble center and is laterreflected from it leading to a low pressure at the core of the
cavity. Later on the inner pressure rises and moves as a shockwave towards the interface. There, it is partially reflected
and partially transmitted into the liquid phase (center). As a consequence of these repeated reflections, the intensityof the
involved shock waves is reduced bringing toward an incompressible behavior (right). The described results fit well those
by Smith (1999), based on an arbitrary Lagrangian-Eulerianversion of the advective upstream-splitting shock-capturing
scheme, also given in the figure. On a longer time scale the cavity reaches a maximum radius of about 2.2 m (≃ 13.8r0)
at about 0.066 s, this is consistent with the values reportedby Smith (1999). Then, within the gas-bubble phase, the cavity
starts to oscillate with smaller amplitudes as shown in the left of figure 3. Both pressure and velocity at the interface
(center and right plots) are highest at the beginning. When the bubble is compressed the pressure tends to a peak and the
velocity becomes negative, the magnitude of both of them decreases in time. According to studies by Keil (1961), most
of the remaining energy from the explosion is released during the first bubble pulsation.

Figure 3: ’1D’ solution in the radial direction for the studied underwater explosion: location (left), pressure (center) and
radial velocity (right) of the interface as a function of time. The results were obtained using a computational domain long
100 m, with constant∆r = 0.00125 m within 10 m and then stretching exponentially outwards.

The positive verification of the ’1D’ solver represents the first step of the solution strategy. The 3D method has also
been built as compressible solver with one fluid and the exchange of information from the ’1D’ domain with the evolving
cavity to the 3D domain with the compressible water is presently under assessment. This part of the research activity and
the further developments, including the possibility to have the gas-water interface in the 3D solver sub-domain and the
structural analysis, will be discussed at the workshop.
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