A numerical strategy for gas cavity-body interactions fromacoustic to incompressible liquid phases.
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The gas-cavity problem with initially high pressure, evoltyin a surrounding liquid, and interacting with a near hody
is a very interesting research topic because it involvesraéphysical phenomena and is of practical interest irecbffit
contexts. For instance, underwater explosions represen@ortant issue for ships and offshore structures. Theedt

is necessary to predict structural effects and try to impnmssel design. To this purpose, physical tests were pesfbr
along the years and theories were developed (Cole 1948)thAnanportant application is in medical field. Implosion
of micro-bubbles with ultrasound in biological flows is useithin a noninvasive technique to remove calculi in human
bodies (Lingemaiet al. 2009).

Here we first focus on the first application. When an underwedpelosion occurs, a chemical reaction and a detonation
process cause the formation of a hot gas with high pressuar¢harrelease of a shock wave traveling in the surrounding
fluid. Then a superheated, spherical, bubble is formed whilHirst expand while the high pressure reduces in time
and propagates in the surrounding liquid. Eventually thigblei starts to oscillate and affect the local pressure. én th
first stage (shock wave) both the gas and the surroundingl llmghave as compressible, in the later stages (gas bubble)
the acoustic wave will disappear and the water can be carsidecompressible. The interaction of this two-phase fluid
with a body will then depend on the vicinity of the body frometaxplosion zone and by the presence or not of other
boundariese.g. the sea floor, the free surface.

The solution strategy: a time-space domain decomposition

We first assume that the explosion occurs very far from otlentaries and that hydrostatic pressure does not affect
the explosion phenomenon leading to a radial symmetry obthuble evolution. Initial values of bubble radius, density
and pressure, can be obtained from physical tests. A cosipleslD’ solver along the radial directionis then used to
simulate the flow evolution until the first shock wave from &xplosion becomes close to the bottom of a vessel assumed
infinitely extended within the local analysis. This can baedecause the problem equations are hyperbolic and so the
presence of the structure will not affect the fluid behindsheck wave. As the shock wave becomes close to the body,
a time-space Domain-Decomposition (DD) strategy is sweitichn, where a compressible 3D solver is initiated by the
simplified '1D’ solution in an inner region affected by thedyoand used to investigate the fluid-body interactions. The
1D’ solution is still applied far from the structure and pides the boundary conditions to the 3D solver along a contro
surface bounding the inner domain. This implies a one-wapliog. The DD limits the computational costs which are
quite high if a compressible 3D solver is used for the whateusation and everywhere due to the limits in the time step
connected with the local speed of sound in the fluid. In casmaxplosion very close to boundaries, this DD cannot be
applied. The main features of the methods involved in the Bbaiefly described next.

1D’ compressible solver for multi-phase flows Assuming radial symmetry, the problem (in general govelmethe
later equation (3)) can be studied as one-dimensional in theection with formal Euler equation
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with U = [p, pu, E|T, F = [pu, pu?, (E + p)u]T andS = 2[pu/r, pu?/r,u(E + p)/r]T. Hereu is the radial velocityp

the pressure and the total energy(e +u?/2). For the closure of the problem we need an equation of st@&)or the
specific internal energy. Here this is assumed of the foa = f¢(p)p+ g5 (p) , with the functionsf; andg; depending

on the fluid properties. In particular, the JonesWilkinsE£&S is used for the gas (Dobratz and Crawford 1985) and an
isentropic Tait relation for the water (Cole 194Bg,

fo=1/w gg = [—A4(1— ng/(R1P09))€7Rlpog/p — By(1— ng/(RQPOg))efRzpog/pg]/w (2)
Jfo=1/v gu=(Bw—Aw)Vw/(w —1)

Here the subscriptg andw stand for gas and water, respectively, is the initial gas densityy,, is the ratio of specific
heats for water and the other parameters are given laterpiidem is solved in time with a first order scheme using
the HLL approximate Riemann solver (Toro 1999) to estimate fluxesF' in each fluid and enforcing a two-shock



approximation to the Riemann problem at the interface apgsed by Liuet al. (2003). The latter provides an exact
solution when a shock wave is reflected and is reliable forggesor gas-water flow. The related equation system is
nonlinear and is solved iteratively with a Newton-Raphscethad givingu;, p;, p* and plt, respectively, the radial
velocity and pressure at the interface and the left and digiisity. To avoid possible instability of the solution, the
left and right densities are corrected by enforcing an igolmndition across the interface. This interface aldnonitis
inserted into a ghost fluid method (Lébial. 2003) providing the conditions across the interface thvéad. In particular,
say that the interface is between node i and i+1 of the cortipotd grid and that we need to solve for the fluid on the
left. Here we consider that for nodesi the density, velocity and pressure are, respectivély, u; andp;, and the other
needed quantities are obtained subsequently. Similadgn for the fluid on the right. At this stage the fludésan be
calculated in each fluid and the problem can be stepped fdrindime. The location of the interface is updated using the
velocity u;. The solver has been satisfactorily verified against séwmairaerical solutions, for fully 1D problems (in this
caseS = 0 in equation (1)) and problems with radial symmetry.

3D compressible multi-phase solver In 3D, the compressible inviscid flow is represented by theaéiqn
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with U = [p, pu, pv, pw, E|T, F, = [pu, pu® + p, puv, puw, (E + p)ul™, F, = [pv, puv, pv? + p, pvw, (E + p)u] 7T,
F. = [pw, puw, pwv, pw? + p, (E + p)u]’. Hereu, v, w are the velocity components. As in '1D’, these equations are
completed by the equations of state described in the preyiavagraph. The equations are integrated witli’eorder
Runge-Kutta scheme in time and they are discretized wizh%aorder finite differences scheme in space. A level set
function¢ is used to represent implicitly the interface between theeftuids and it is advected in time using the equation
9¢
at+Vz~V¢—0 4)
whereV; is the interface velocity calculated as in Létial. (2003). To make the solution efficient in time, an adaptive
mesh refinement is used according to MacNeical. (2000). The grid is halved either close to the interfacevben the
two fluids or in proximity of high gradients of the fluid variels U. An example of mesh refinement is shown in figure
1, at the starting time of the explosion, close to the intexfdhe grid size is extremely refined. The refinement grazes t
a coarse mesh far from the interesting region.

Figure 1: Example of adaptive mesh refinement close to thevger interface.

Fluid-structure interaction problem To estimate the local effects on the bottom of a vessel, asafitesmpt this has
been modelled as an infinitely extended orthotropic plate,eg. Faltinsen (1999). The stresses and strains will be
first evaluated using a quasi-static approach, then thetatal and hydrodynamic problems will be coupled to assess
excitation of hydroelasticity.

Preliminary results
The underwater explosion documented by Smith (1999) has besed as a test case to develop and assess the DD ap-

proach. The initial radius of the gas cavityris= 0.16 m and the parameters for the EOS of the fluids, using Sl system,
are: po, = 1630.0, po, = 8.381-10%, 4, = 3.712 - 10", B, = 3.23 - 10°, Ry = 4.15, Ry = 0.95, w = 0.30,



Pow = 1025.0, pg, = 1.0-10%, A, = 1.0 - 10%, B,, = 3.31E8 and~,, = 7.5. First the problem has been studied fully
by the ’1D’ solver within the radial-symmetry assumption.cénvergence analysis has been performed using a compu-
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Figure 2: '1D’ solution in the radial direction for the stedi underwater explosion: pressure distributions at differ
time instants. The empty circles indicate the instantaseadial location of the interface. The triangles are the eviral
results by Smith (1999). For sake of clarity, in the left pdaty the Smith’s solutions at 25, 96 and 257 are shown.

tational domain long 10 m and a uniform discretizatitn. The order of accurac® A (Colicchio 2004) was adopted
as measure, which involves the time integral of the selecaeidble calculated with three discretizations and shbeld
one for a solver accurate to the first order. In our case, uding= 0.00125 m, 1.5Ar ant2.25Ar and studying the
evolution up to 0.05 s, at a locatien~ 44ry, O A was found 1.45, 1.44, 1.32 and 1.56, respectivelyfar, p andE. At

the interface, where very complicated phenomena ocgdrjs more limited and was found 0.39, 0.80 and 1.10, for the
position of the interface;;, and foru; andp;, respectively. The evolution for the finest grid is shown gufe 2 in terms

of pressure distribution and interface location at différgme instants during the initial shock-wave phase. Thages
involves a cavity expansion and is typically associatedh aitelease of more tha@i®% of the energy from the explosion
(Keil 1961). In this example, at first (left) a primary shockwe is caused by the detonation and moves rightwards while
an expansion wave moves toward the bubble center and isédlierted from it leading to a low pressure at the core of the
cavity. Later on the inner pressure rises and moves as a steaektowards the interface. There, it is partially reflected
and patrtially transmitted into the liquid phase (cente.afconsequence of these repeated reflections, the intehity
involved shock waves is reduced bringing toward an incosgibée behavior (right). The described results fit well thos
by Smith (1999), based on an arbitrary Lagrangian-Eulerasion of the advective upstream-splitting shock-captur
scheme, also given in the figure. On a longer time scale thgya@aches a maximum radius of about 2.2m13.8r)

at about 0.066 s, this is consistent with the values repdayegimith (1999). Then, within the gas-bubble phase, theyavi
starts to oscillate with smaller amplitudes as shown in #fiedf figure 3. Both pressure and velocity at the interface
(center and right plots) are highest at the beginning. Wherbtibble is compressed the pressure tends to a peak and the
velocity becomes negative, the magnitude of both of themedees in time. According to studies by Keil (1961), most
of the remaining energy from the explosion is released dthie first bubble pulsation.
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Figure 3: "1D’ solution in the radial direction for the stedi underwater explosion: location (left), pressure (agted
radial velocity (right) of the interface as a function of 8mrhe results were obtained using a computational domag lo
100 m, with constanf\r = 0.00125 m within 10 m and then stretching exponentially outwards.

The positive verification of the 1D’ solver represents thetfstep of the solution strategy. The 3D method has also
been built as compressible solver with one fluid and the exghaf information from the '1D’ domain with the evolving
cavity to the 3D domain with the compressible water is prdgemder assessment. This part of the research activity and
the further developments, including the possibility to énélve gas-water interface in the 3D solver sub-domain and the
structural analysis, will be discussed at the workshop.
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