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1 Introduction

Within the framework of incompressible, homogeneous and inviscid flow modelling of water waves,
the pressure plays an important role in establishing various qualitative properties of traveling
waves. The pressure is also essential in quantitative studies because often in practice the elevation
of a surface water-wave is determined from pressure data obtained at the sea bed, see e.g. [6].
Indeed, measuring a free surface wave motion without intrusive probes is of most importance for
practical applications, and one way to achieve this is to use pressure gauges at the sea bed. From
these pressure measurements, the question is how one can reconstruct the free surface.

A standard approach consists in assuming that the hydrostatic approximation is sufficiently
accurate. However, already for waves of moderate amplitude, prediction errors exceeding 15%
frequently occur [1]. These inaccuracies are due to the fact that the hydrostatic approximation
ignores even linear wave effects. Within the linear regime of water waves of small amplitude in
finite depth, one can derive a better approximation [4], but its benefit is offset by the fact that,
for waves of moderate amplitude, it often overestimates the wave height by more than 10% [6].
These considerations motivated the quest for a reconstruction formula that accounts for nonlinear
effects and that is thus applicable to waves of moderate and large amplitude. Nonlinear nonlocal
equations relating the dynamic pressure on the bed and the wave profile were obtained without
approximation from the governing equations [3, 5]. The entangled character of these equations is
a considerable impediment in the pursuit of an in-depth analysis and for practical applications.

Very recently, new exact tractable relations have been obtained [2], allowing mathematical
analysis and a straightforward numerical procedure for deriving the free surface from the pressure
at the bed. However, in [2], only relations leading to procedures where convergence and unicity
could be rigorously proven were included. It is nonetheless possible to derive several other exact
relations that are of major practical interest, though the efficiency of the procedures based on
these relations have not yet be proven (i.e. convergence and unicity is theoretically unknown). The
present paper is devoted to the derivation of these new relations and to the numerical illustration
of heir efficiency.

In section 2, the hypothesis and notations are introduced for steady irrotational surface waves
on constant depth. In order to make the present paper self-contained, the main results of [2] are
given in section 3. A new, purely local, expression for the free surface is then derived in section 4,
which is the main result of the present paper.

2 Hypothesis and notations

In a frame of reference moving at the constant wave speed c, the flow beneath a traveling wave
reduces to a steady motion with respect to the moving coordinate system. Let (x, y) be a Cartesian
coordinate system moving with the wave, x being the horizontal coordinate and y the upward
vertical coordinate. Let {u(x, y), v(x, y)} be the velocity field in the moving frame. The wave is



(2π/k)-periodic in the x-direction, and we denote by y = −d, y = η(x) and y = 0 the equations
of the horizontal bottom, of the free surface and of the mean water level, respectively. The latter
equation expresses the fact that 〈η〉 = 0 for the smooth (2π/k)-periodic wave profile η, where 〈·〉
is the Eulerian average operator over one wavelength,

〈 η 〉 ≡
k

2π

∫ π/k

−π/k
η(x) dx = 0. (1)

Let φ and ψ be the velocity potential and the stream function, respectively, such that u =
φx = ψy and v = φy = −ψx. It is convenient to introduce the complex potential and the complex
velocity f = φ + iψ and w = u − iv, respectively, that are holomorphic functions of the complex
variable z = x + iy, with f = f(z) and w = df/dz. The equation of mass conservation for
a homogeneous fluid and the irrotational character of the flow are identically fulfilled with the
requirement that f and w are holomorphic functions throughout the fluid domain. The Euler
equation can be expressed by means of the Bernoulli condition

2 p + 2 g y + u2 + v2 = B, x ∈ R, −d 6 y 6 η(x), (2)

for some Bernoulli constant B, where p = p(x, y) is the pressure divided by the density. From (1)
and (2), we get

B =
〈

us
2 + vs

2
〉

=
〈

ub
2
〉

, (3)

where us and vs denote the restrictions of u and v to the free surface, respectively, while ub denotes
the restrictions of u at the bed. (The second equality in (3) derives from the irrotationality.) The
relations (2) and (3) yield

〈 pb 〉 = g d, (4)

where pb(x) = p(x,−d) is the normalized relative pressure at the bed.
Finally, we define the wave phase velocity c such that c = −〈ub〉, so that the wave travels with

phase speed c in the frame of reference where the mean horizontal velocity is zero at the bed, and
where c > 0 if the wave travels toward the increasing x-direction.

3 Equations for the surface recovery

Instead of dealing with the complex potential f or with the complex velocity w, it is advantageous
to use the holomorphic function w2. Indeed, the function P defined by

P(z) ≡ 1

2
B + g d − 1

2
w2(z) = 1

2
B + g d − 1

2
(u2 − v2) + iu v, (5)

is holomorphic in the fluid domain and its restriction to the flat bed y = −d has zero imaginary
part and real part pb, i.e., pb(x) = P(x − id) = gd + 1

2
(B − u 2

b
). Thus pb determines P uniquely

throughout the fluid domain, i.e., P(z) = pb(x + iy + id). Note that p coincides with the real
function Re{P} only on y = −d because p is not a harmonic function in the fluid domain.

Using the surface impermeability and (2) on the free surface y = η(x) where p = 0, we have

(us − ivs)
2 = (1− iηx)

2 u 2

s = (1 + η 2

x )u
2

s (1− iηx) / (1 + iηx)

= (u 2

s + v 2

s ) (1 − iηx) / (1 + iηx) = (B − 2gη) (1 − iηx) / (1 + iηx).

Multiplying this relation by (1 + iηx) and using (5), we obtain at once

gη (1− iηx) + iBηx = [P(x+ iη) − g d ] (1 + iηx). (6)



The real and imaginary parts of (6) give two equations for η:

g η = Re{Ps} − g d − ηx Im{Ps}, (B − g η) ηx = [Re{Ps} − gd ] ηx + Im{Ps}, (7)

where, as above, the subscript ‘s’ denotes the evaluation at the free surface y = η(x). Using (5),
we can see that equations (7) are precisely

g η = 1

2
[B − u 2

s − v 2

s ], (B − gη) ηx = 1

2
[B + u 2

s + v 2

s ] ηx. (8)

Thus, both are ensured by the validity of the Bernoulli condition (2) on the free surface. Since
ηx 6= 0 between consecutive crests and troughs, not only does (8a) imply (8b), but also (8b)
ensures the validity of (8a) between consecutive crests and troughs, and by continuous extension
everywhere.

For the recovery of the surface wave profile η, given the function pb, one can proceed as follows.
For periodic waves, the pressure p at the bed y = −d can be approximated, e.g., by a N -th order
Fourier polynomial and the function P is obtained at once, i.e.,

pb(x) ≈

N
∑

n=−N

pn exp(inkx) ⇒ P(z) ≈

N
∑

n=−N

pn exp(ink[x+ i(y + d)]), (9)

with p−n = pn since pb is real, and p0 = gd. Note that (9) is not the only possible approximation
and, e.g., elliptic functions could also be used, specially in shallow water.

The wave amplitude η0 is obtained evaluating (7a) at the wave crest located at x = 0 (where
ηx = 0 and η = η0) leading to the implicit equation

η0 = Re{P(iη0)} / g − d. (10)

The crest height η0 is obtained as the unique solution to (10), as proven in [2] and where numerical
examples are provided. With η0 determined by solving (10) iteratively, η is subsequently obtained
re-expressing (7b) as the ordinary differential equation

ηx = Im{Ps} / [B − gη − Re{Ps} + gd ] , (11)

with initial data η(0) = η0. The right-hand side of (11) being smooth, the solution can be obtained
by a standard iterative procedure, as proven and illustrated in [2]. It is however possible to derive
a local simpler expression which does not require the resolution of a differential equation.

Note that the surface reconstruction procedure described here is valid for all waves, except per-
haps for the highest ones with an angular crest and for waves with different crests, as demonstrated
in [2]. Note also that the inclusion of surface tensions is straightforward, but this generalisation
has little practical interest.

4 New equation for the surface recovery

Let be yet another holomorphic function Q such that

Q(z) ≡

∫ z

z0

[

P(z′) − g d
]

dz′ =

∫ z

z0

1

2

[

B − w(z′)2
]

dz′, (12)

where z0 is an arbitrary constant. Taking z0 at the origin of the free surface — i.e., x = 0, y = η0
thence z0 = iη0 — and choosing the surface as integration path, the definition (12) yields

Qs(x) =

∫ x

0

[

P(x′ + iη(x′)) − g d
]

[ 1 + i ηx(x
′) ] dx′, (13)



thence, substituting (6), after some elementary algebra

Qs(x) =

∫ x

0

g η(x′) dx′ + i [ η(x) − η0 ]
[

B − 1

2
g η0 − 1

2
g η(x)

]

. (14)

The imaginary part of this relation yields an implicit equation for η:

κ η = 1 −
√

(1− κη0)2 − (2κ/B) Im{Qs} , (15)

where κ ≡ g/B is a parameter introduced for convenience. The relation (15) is algebraic (i.e.,
neither differential nor integral) and local. η can be obtained via functional iterations once Q is
known. Once the pressure at the bottom is known, it is trivial to obtain P as indicated above and,
subsequently, Q is easily obtained too, for example from the approximation (9)

Q(z) ≈
∑

n 6=0

pn

ink
[ exp(inkz) − exp(−nkη0) ] exp(−nkd). (16)

The remaining open question is whether or not the iterations of (15) converge. Preliminary nu-
merical investigations suggest that converge occurs, but a more thorough analysis is required as
formula (15) is potentially very useful for practical applications.

Note that solutions of (15) are also solutions of (11). Indeed, using (13), the derivative of (15)
gives

ηx =
(1/B) [ Im{Qs ]x

√

(1− κη0)2 − (2κ/B) Im{Qs}
=

Im{Ps} + (Re{Ps} − g d ) ηx
B − g η

, (17)

and solving this equation for ηx yields equation (11) precisely, of course.

5 Conclusion

We have derived some exact relations for the reconstruction of the free surface wave profile from
pressure measurements at the bed. In particular, we obtained a new local relation for the free
surface that is potentially very attractive for practical applications.

More insights of the method, including mathematical proofs and numerical examples will be
presented at the workshop.
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