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Introduction

This abstract is concerned with the development
of an efficient and scalable hybrid-spectral model for
a fully nonlinear numerical wave tank with finite di-
mensions, which is used for simulation of nonlinear
free surface waves generated by a moving wavemaker.
The approach pursued here is based on the Ocean-

Wave3D strategy established in [1, 6, 7], replacing
the horisontal high order finite difference approxima-
tions used in OceanWave3D with a Fourier Colloca-
tion method based on cosine modes. This is com-
bined with a modal Chebyshev Tau method for the
potential in the vertical, which by applying an effi-
cient strategy for solving the discrete Laplace equa-
tion yields a new attractive and accurate Dirichlet-
to-Neumann operator, recently established in [4].
The application of hybrid-spectral methods in the

context of the OceanWave3D strategy is motivated
by the comparative study of two serial implemen-
tations of nonlinear water wave models carried out
in [5], which demonstrated that the high-order finite
difference model (OceanWave3D) requires approxi-
mately an order of magnitude larger computational
effort than the high order spectral model (HOS) in
order to solve highly nonlinear water wave problems
to the same level of accuracy. Compared to the
HOS model, the main advantage of OceanWave3D
is a relatively straight-forward introduction of non-
rectangular geometry, in particular varying bottom
bathymetry and the generation of waves by a mov-
ing wavemaker. These attractive properties, associ-
ated with the OceanWave3D solution strategy, are
retained in the presented hybrid-spectral method.
In this abstract the governing equations for the

fully nonlinear free surface potential wave problem
are derived in curvlinear coordinates on a fixed com-
putational domain, which allows the fully nonlinear
wavemaker condition to be satisfied directly. The
hybrid-spectral discretization strategy and iterative
solution of the resulting discrete Laplace problem
are detailed, and it is described how the wavemaker
can be modelled by the introduction of additional
potentials following the line of [2], which with the
present discretization strategy can be obtained es-
sentially free of cost.
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Problem Formulation

A Cartesian coordinate system xi = (x1, x2, x3) is
adopted with the x1x2-plane located at the still wa-
ter level and the x3-axis pointing vertically upwards.
Indicial notation is invoked and the summation con-
vention applies to repeated indices, with latin indi-
cies i = 1, 2, 3 accounting for all spatial dimensions,
while greek indicies α = 1, 2 only apply to the ho-
risontal dimensions. The still water depth is given
by x3 = −h(xα) and the position of the free surface
is defined by x3 = ζ(xα, t). The wave tank is assumed
rectangular in the horisontal plane with dimensions
L1, L2 and vertical walls, and the gravitational ac-
celeration g is assumed to be constant. Assuming an
inviscid fluid and in irrotational flow, the fluid veloc-
ity ui = ∂xi

φ is defined by the gradient of a scalar
velocity potential φ(xi, t). The position of the free
surface in an Eulerian frame of reference is captured
by the usual kinematic boundary condition, while the
dynamic free surface boundary condition follows from
Bernoulli’s equation,

∂tζ = ∂x3
φ− ∂xα

φ∂xα
ζ, (1a)

∂tφ = −gζ − 1
2∂xi

φ∂xi
φ. (1b)

To evolve these equations in time requires solving
the Laplace equation for φ in the fluid volume Ω. A
well-posed Laplace problem is achieved by specifying
a known φ at the free surface ζ, together with kine-
matic boundary conditions at the solid boundaries to
the domain, i.e. the wave maker, walls and seabed,

∂xixi
φ = 0, xi ∈ Ω, (2a)

ni(∂xi
φ− vsolidi ) = 0, xi ∈ ∂Ωsolid, (2b)

The free surface is a time-dependent moving bound-
ary with an a priori unknown position, practi-
cally resulting in a time-dependent domain which
may handled efficiently using the well-known σ-
transformation in the vertical [1]. Further introduc-
ing a wavemaker as a moving solid boundary, with
an a priori known position x1 = F (x2, x3, t) provided
by a paddle signal, yields the requirement for a more
general mapping between the physical domain Ω and
a fixed, time-independent computational domain ΩC ,

xi = xi(ξ
j , t) ⇔ ξj = ξj(xi, t), ξj ∈ ΩC (3)

where ξj = (ξ1, ξ2, ξ3) is a set of general curvlinear
coordinates. The mapping xi = xi(ξ

j , t) from com-
putational to physical space is done using transfinite
interpolation with linear blending of the boundary



faces, i.e. the free surface, seabed, wavemaker and
the fixed walls of the domain [8], while the inverse
mapping ξj = ξj(xi, t) is not established explicitly
though it formally indeed does exist. Taking the
derivatives of the mappings ∂ξjxj and ∂xi

ξj yield
the Cartesian components of the covariant and con-
travariant basis vectors gj and gj , which also defines
the co- and contravariant metric tensors gij and gij ,

(gj)i = ∂ξjxi,
(

gj
)

i
= ∂xi

ξj , (4a)

gij = gi · gj , gij = gi · gj . (4b)

Via the chain rule, these co- and contravariant ba-
sis vectors provide the relationship between spatial
derivatives in the physical and computational spaces.
For example, derivatives of ζ and φ with respect to
xi and ξ

j are related by

∂xα
ζ = ∂xα

ξj ∂ξjζ = (gj)α ∂ξjζ, (5a)

∂xi
φ = ∂xi

ξj ∂ξjφ = (gj)i ∂ξjφ. (5b)

Note that ∂x3
ζ = 0 and hence only ∂xα

ζ are eval-
uated. Similarly the temporal derivatives of ζ, φ in
physical and computational spaces are related as fol-
lows, due to [8],

(∂tζ)xi
= (∂tζ)ξj − (∂txα)ξj ∂xα

ζ (6a)

= (∂tζ)ξj − wα(g
j)α ∂ξjζ,

(∂tφ)xi
= ((∂tφ)ξj − (∂txi)ξj ∂xi

φ (6b)

= (∂tφ)ξj − wi(g
j)i ∂ξjφ,

where ()ξj , ()xi
indicates the spatial coordinates be-

ing kept fixed under partial time differentiation, while
wi = (∂txi)ξj denotes the transport velocity of the
transient physical reference frame due to the motion
of the boundaries.
The covariant basis vectors gj are immediately

evaluated from the mapping function xi = xi(ξ
j , t)

at any instance in time by application of the differ-
ential operators ∂ξi in computational space. From
these the contravariant basis vectors gj , which are
required to evaluate (5)-(6), are computed by cross
products of gj as,

gk = (
√
g)−1 εijk gi × gj ,

√
g =

√

det (gij). (7)

in which
√
g has been introduced as the Jacobian of

the mapping and εijk is the permutation operator.
Similarly the contravariant metric tensor gij follows
from the covariant tensor gij as its inverse,

gijgij = δji ⇒
(

gij
)

= (gij)
−1 , (8)

where δji denotes the Kronecker delta.
Inserting (5)-(6), the free surface evolution equa-

tions (1) may be cast in computational space as,

∂tζ = wα(g
j)α ∂ξj ζ + (gj)3 ∂ξjφ (9a)

−
(

(gj)α ∂ξjφ
) (

(gk)α ∂ξkζ
)

,

= (gj)3 ∂ξjφ−
(

(gj)α ∂ξjφ− wα

) (

(gk)α ∂ξkζ
)

,

∂tφ = wi(g
j)i ∂ξjφ− gζ (9b)

− 1
2

(

(gj)i ∂ξjφ
) (

(gk)i ∂ξkφ
)

,

= − gζ − 1
2

(

(gj)i ∂ξjφ− wi

) (

(gk)i ∂ξkφ
)

,

which shows that the transient physical domain is
captured by recasting the free surface equations in
arbitrary Eulerian-Lagrangian form in computational
space. As a remark the widely used Zakharow form
of the free surface equations, applied e.g. in [1], may
be derived from (9) simply by taking the mapping
xi = xi(ξ

j , t) to be the inverse of the σ-transform.
The Laplace equation and the kinematic solid

boundary condition (2) are similarily expressed in
curvlinear coordinates as follows, due to [8],

(
√
g)−1∂ξi

(√
ggij∂ξjφ

)

= 0 ξj ∈ ΩC , (10a)

ni

(

(gj)i ∂ξjφ− vsolidi

)

= 0, ξj ∈ ∂Ωsolid
C , (10b)

in which it is assumed that the normal vector ni to
the physical solid boundaries and the solid boundary
velocity vsolidi are expressed in computational space.

Numerical Methods

A method of lines approach is adopted for the dis-
cretization of the governing equations stated above.
For the time-integration of the free-surface equations
(9), the classic four-stage, fourth-order Runge-Kutta
scheme is employed as it is not subject to any severe
stability constraint on the choice of time steps.
The governing equations are discretized in the

computational space using a hybrid-spectral collo-
cation method detailed in [4], combining a nodal
Fourier collocation method on a horisontal grid of
M = (N1, N2) grid points with a modal Chebyshev
Tau method in the vertical truncated to the first
N3 = N + 1 Chebyshev polynomials, where N is the
polynomial order. Due to the finite dimensions and
rectangular shape of the numerical wave tank (with
the wavemaker at neutral position), it was suggested
by [2] to employ a tensor product of cosine modes,
i.e. real-and-even Fourier modes, as the basis for the
horisontal Fourier collocation method, since they are
the natural modes of the tank. Hence ζ, φ have the
global representation in the computational domain,

ζ(ξα, t) =

M−1
∑

m=0

ζm(t) lm (ξα) , (11a)

φ(ξj , t) =

M−1
∑

m=0

N
∑

n=0

φ̂mn(t) lm (ξα) Tn
(

ξ3
)

, (11b)

where ζm(t) = ζ(ξm, t) and φ̂mn(t) = φ̂n(ξm, t)
are the solutions at the collocation nodes ξm =



(m + 1
2 )/Mπ, while Tn

(

ξ3
)

= cos
(

n arccos
(

ξ3
))

are the Chebyshev polynomials and lm (ξα) are glob-
ally defined nodal Lagrange interpolation polynomi-
als, which may be formally derived from the cosine
modes ψm (ξα) = cos

(

m1ξ
1
)

cos
(

m2ξ
2
)

. Finally
m = (m1,m2) is a multi-index where the two com-
ponents of m are allowed to vary independently.
The horisontal derivatives ∂ξα are approximated

by their discrete counterparts in computational
space using the Fast Fourier/Cosine Transform
(FFT/FCT) to evaluate the derivatives in the col-
location nodes. The Chebyshev Tau method pro-
vides an efficient, spectrally accurate Dirichlet-to-
Neumann operator for the evaluation of the gradient
of the velocity potential at the free surface. Based on
orthogonal truncation rather than interpolation (as
used e.g. in finite difference methods), the Cheby-
shev Tau method seeks to satisfy the Laplace equa-
tion (10a) over the depth for each vertical set of collo-
cation nodes in weak form by requiring the residual
to be orthogonal to a set of test functions Tq

(

ξ3
)

for q = 0, . . . , N − 2. The remaining two equations,
required to obtain a square system of Nz equations
with the Nz unknowns φ̂mn for each vertical set of
collocation nodes, arise by imposing additional con-
straints on the coefficients in order to satisfy the free
surface and bottom boundary conditions. For further
details on the Chebyshev Tau method see e.g. [3].
Applied to the Laplace equation (10a) the Cheby-

shev Tau method yields a set of convolution sums,
which for relatively simple mappings between the
physical and the computational domain, such as the
σ-transform, may be evaluated efficiently in modal
space. The costs associated with the evaluation of the
Laplacian in such cases by direct convolution sums
are comparable to those of applying a sixth order fi-
nite difference method. However, as demonstrated
in [4] the Chebyshev Tau method introduces signif-
icantly lower dispersion errors than comparable fi-
nite difference methods. For more general mappings
it may be advantageous to evaluate the convolution
sums by pseudo-spectral products in the correspond-
ing nodal space trough application of the FCT, which
applies to Chebyshev polynomials.
The resulting discrete Laplace problem can be

stated as a rank n = N1N2N3 linear system of
equations AΦ = b, where A is a large dense, non-
symmetric matrix (in case the FFTs are replaced
with matrix-based discrete Fourier transforms), Φ
is a vector of values for the unknown scalar ve-
locity potential, while b is a vector accounting for
the inhomogeneous boundary conditions. Since the
discrete Laplace problem is one spatial dimension
O(Nz) larger than the free surface problem, the solu-
tion of this linear system at every time step is conse-
quently the computational bottleneck of the model.
The discrete Laplace problem can be solved effi-

ciently (i.e. with optimal scaling of the computa-

tional effort and memory footprint) by a iterative left
preconditioned defect correction (PDC) method, as
detailed in [4]. Evaluation of the residual r = b−Aφ
and hence the matrix-vector product Aφ does not
require A to be formed explicitly and may be eval-
uated in O(n logN1) and O(n logN2) operators by
application of the FCT horisontally.
The action of the preconditioning problem in the

PDC method is to compute the correction δ to the
current solution by solving the linear system of equa-
tions Mδ = r, where M ≈ A is the preconditioning
matrix. For the present problem and hybrid-spectral
discretization method, the corresponding constant
coefficient Laplace problem (i.e. neglecting bottom
variations, free surface elevation and wavemaker mo-
tion) provides an attractive efficient and sparse pre-
conditioning strategy. In order to avoid assembling
and factorizing the full dense preconditioning matrix,
the residual r is first transformed to a modal cosine
representation horizontally by use of the FCT, while
the modal Chebyshev representation is retained in
the vertical. This decouples the preconditioning step
into a inhomogeneous constant coefficient Helmholz
equation in the vertical for each horizontal cosine
mode, since r 6= 0 and ∇2ψm (ξα) = −m·mψm (ξα).
Applying the Chebyshev Tau method in the verti-

cal to each of the Helmholz equations yields N1N2

sparse systems of N3 equations at each horisontal
collocation point. These systems are primarily quasi-
pentadiagonal as each row contains only three non-
zero entries in diagonals (−2, 0,+2) in addition to
two dense rows enforcing the boundary conditions,
see [3]. Using a tailored Gaussian elimination solu-
tion strategy, each of these systems is solved in just
18N3 operations, only around twice the cost of the
classic tridiagonal matrix algorithm, and with the
same 2pmemory footprint, making this precondition-
ing strategy well suited for parallel implementation.

Wave Generation by Additional Potentials

The wavemaker is modelled as a solid moving
boundary with a known position x1 = F (x2, x3, t),
which gives rise to the following free slip condition,

∂tF = ∂x1
φ− ∂x2

F∂x2
φ− ∂x3

F∂x3
φ = ∂nφ, (12)

where ∂n denotes the derivative normal to the wave-
maker with normal vector ngen

i = (1,−∂x2
F,−∂x3

F ).
The velocity potential (11b) defined in terms of co-
sine modes implicitly satisfies homogeneous Neu-
mann boundary conditions, hence it cannot account
for the inhomogeneous Neumann boundary condition
introduced by the wavemaker motion. This was also
noted by [2], who suggested the use of additional po-
tentials to account for the inhomogeneous Neumann
condition by splitting the potential into two,

φ = φP + φG, (13)



where φP is the propagating spectral potential de-
fined in (11b) and φG is the generation potential
accounting for the inhomogeous Neumann condition
(12) at the wavemaker, while the total potential φ is
advanced by the free surface equations (9).
In this work we seek to establish the generation

potential φG by exploiting that the Laplace equation
and boundary conditions (10a) are solved directly in
discrete form in the fluid domain, and not—as was
done in [2]—by constructing the velocity potential
such that satisfies the governing equations identically
in the domain. Casting the Laplace problem in phys-
ical space for clarity, this approach can be illustrated
by considering a piston type wavemaker with position
x1 = F (t), i.e. a translation of the wall. The inhomo-
geneous Neumann condition at the wavemaker (12)
must be satisfied by the generation potential,

∂tF = ∂x1φG, x1 = F, (14)

while φG at the same time may not introduce inho-
mogeneous Neumann terms on the other walls of the
domain. However, φG is not required to satisfy the
Laplace equation, bottom or free surface boundary
conditions, suggesting that φG can be expressed as,

φG(xi, t) = ∂tF (x2, x3, t)ϕG(x1, t), (15)

where the function ϕG(x1, t) must satisfy
∂x1

ϕG|x1=F (t) = 1 and ∂x1
ϕG|x1=L1

= 0 in or-
der to reflect the Neumann conditions at these
locations. These conditions may be satisfied by the
third order Hermite polynomial,

ϕG(x1, t) = (L1−F (t))−2
(x1−F (t)) (L1−x1)2, (16)

which further satisfies ϕG|x1=F (t) = ϕG|x1=L1
= 0.

Inserting the splitting of the velocity potential (13)
in (2) yields a Poisson equation for the propagation
potential φP with homogeneous Neumann boundary
conditions at the wavemaker and all fixed walls,

φP = φ− φG, x3 = ζ, (17a)

∂xixi
φP = −∂xixi

φG, xi ∈ Ω, (17b)

∂x1
φP = 0, x1 = F, (17c)

nwall
i ∂xi

φP = 0, xi ∈ ∂Ωwall, (17d)

nbot
i ∂xi

φP = −nbot
i ∂xi

φG, xi ∈ ∂Ωbot, (17e)

This Poisson equation may be discretized using the
presented hybrid-spectral method and solved effi-
ciently with the PDC method. The generation poten-
tial is thus essentially obtained free of cost, as only
the action of the discrete Laplace operator on the
generation potential must be evaluated in order to
form the right-hand-side vector to the Poisson prob-
lem. The approach generalises to other types of wave-
makers such as flaps, in which case it is necessary to
express the generation potential and Poisson equa-
tion for the propagation potential in computational

space. Further the idea of additional potentials may
be used to introduce Sommerfeld type, radiation out-
flow conditions at the opposite end of the wave tank.

Results & Future Work

The presented hybrid-spectral model provides an
efficient and accurate tool for simulation of fully
nonlinear free surface waves. Compared to the
OceanWave3D finite difference based model, prelim-
inary studies considering highly nonlinear propagat-
ing waves indicate both improved accuracy and a
50% reduction of the computational costs for iden-
tical problem sizes, see [4].
At the 28th IWWWFB we will present results ob-

tained with the fully nonlinear numerical wave tank,
including the wavemaker model by introduction of
additional potentials essentially free of cost.
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