
28th IWWWFB, L’ Isle sur la Sorgue, France 2013 

 

 
 

On the wave resistance of an immersed prolate spheroid in infinite water depth 
 

by 
 

Ioannis K. Chatjigeorgiou1 Spyros A. Mavrakos1 Touvia Miloh2 
chatzi@naval.ntua.gr  mavrakos@naval.ntua.gr  miloh@eng.tau.ac.il  

1School of Naval Architecture and Marine Engineering, National Technical University of Athens, Greece 

2Faculty of Engineering, Tel-Aviv University, Israel 

1 Introduction 

It is the purpose of this study to present a newly developed robust and efficient solution of the wave resistance 
problem of immersed prolate spheroids moving under regular waves with constant forward speed. Here the term 
“wave resistance” is associated with the coupled forward speed and wave impact problem, the latter being 
directed to the spheroid under arbitrary heading angle. Parts of the investigated subject were partly treated in the 
past by several authors who, however, isolated the two major contributions, namely the forward speed and the 
wave effects. In this context Havelock [1] approximated the wave resistance of prolate and oblate spheroids 
using Lagally’s [2] theorem (without mentioning Lagally in this connection) using the axial source distribution 
corresponding to the motion of the spheroid in an infinite mass of liquid. Farell [3] expanded the sources 
distributed on the surface of the spheroid into series of spheroidal harmonics and reported significant 
differentiations compared to Havelock’s [1] predictions. Wu and Eatock Taylor [4-5] used Farell’s [3] approach 
to tackle the diffraction (only) problem assuming (only) frontal wave heading.   

Here a solution to the complete problem is presented (waves and forward speed) which we achieved by 
employing Miloh’s [6] image singularities.  

 
Fig. 1 3D image of a prolate spheroid below the free surface (non-axisymmetric case) with a/b=6. 

2 Multipole expansions in curvilinear coordinates for surface waves 

The concerned spheroidal body is considered immersed at a distance f below the undisturbed free surface (Fig. 1). 
The non-axisymmetric case is considered meaning that symmetrical axis (x-axis) is parallel to the free surface.  
Using left-handed Cartesian (x, y, z) coordinates, fixed on the free surface with z pointing downwards we start 
with the following well known Fourier expansion for the fundamental Green’s function of the Laplace equation  
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The common linearized free-surface boundary condition for the velocity potential, in the case of time-harmonic 
oscillations with frequency ω, including a forward motion with constant velocity U along the x direction, is  
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 to be applied at z=0 with g being the gravitational acceleration. Eq. (2) can also be cast to  
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where gU /2  and gK /2 . Hence the Green’s function can be written as  
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Clearly for τ=0 (U=0) we recover the diffraction problem whereas for K=0 (ω=0) we get the forward speed 
(wave resistance) problem. The former case applies directly to the radiation problem as well by replacing the 
Neumann boundary condition on the spheroid by  
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where the index R is used to denote the radiation potential, r


 is the position vector (with respect to the origin) 
and ni denotes the unit vector in the direction i. The boundary conditions involved in (6) describe all six radiation 
problems. Finally, in order to satisfy the far-field Sommerfeld radiation condition, the following notation is used 
in (4) and in the sequel,  
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where the acronym PV is used to denote Cauchy’s Principal Value Integral. 

3 Prolate spheroidal coordinates – non axisymmetric case 

A prolate spheroidal (ζ, μ, ψ) coordinate system is defined, with an origin at a depth f below the undisturbed free 
surface such that the spheroid is assumed to be fully submerged. We also define ζ=coshu, μ=cosϑ, where 0≤u≤∞, 
0≤ϑ≤π and 0≤ψ≤2π. The transformation from prolate spheroidal to Cartesian coordinates is x=ccoshucosϑ, 
y=csinhusinϑsinψ, z=csinhusinϑcosψ. Hence, x=cμζ and z+iy=c(ζ2-1)1/2(1-μ2)1/2eiψ, where c represents half the 
distance between the two foci of the spheroid. In terms of the semi-major a and semi-minor b axes of the 
spheroid, c is expressed as c=ae where e=(1-(b/a)2)1/2 denotes the eccentricity. It is noted that in the following 
analysis c was taken equal to unity and thus it is used as a reference length scale. For manipulating the original 
Green’s function (see Eq. (4)) in prolate spheroidal coordinates we use a most useful relation which was 
originally suggested without proof by Havelock [7] and later rigorously obtained by Miloh [6]. The concerned 
relation expresses any exterior spheroidal harmonic in terms of prescribed singularities disturbed on the major 
axis of the spheroid between the two foci. In particular Havelock’s formula for the present case may be written 
as  
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where m
nP , m

nQ  denote the associate Legendre functions of the first and the second kind with order m and 
degree n. Accordingly,  using the proposed approach one can readily express the  Green’s function  as 
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where  
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It should be noted that the above relations assume that the direction of the vertical coordinate has been reversed 
showing upward. To enable feasibility of numerical computations Eqs. (9)-(10) should be further manipulated. 
To this end exp(-ikλcosa) is expanded into a Taylor series and a most useful relation that can be found in 
Gradshteyn and Ryzhik [8, p. 772] is employed. Hence the next representation of Green’s function reads  
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Note that the dependence on the vertical coordinate was transformed to be expressed in terms of the z* axis fixed 
on the center of the body. 

In order to allow the employment of the zero velocity condition on body’s surface the exponential term in Eq. 
(11) must be cast to spheroidal harmonics. To this end a most useful relation shown by Havelock [9] will be 
applied. This is  
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where js is the spherical Bessel function of the first kind and  
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The final form of Green’s function now becomes  
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and mt
nsC

~
 is obtained through the former after replacing )(aNt  by )(

~
aNt . The calculation of mt

nsC  and mt
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coefficients virtually completes the solution to the problem and the scattered potential is obtained by the 
following multipole expansion in prolate spheroidal coordinates  

  


 



  












0 0 0 0

)()(sin
~

cos)()(),,(
n

n

m

t
s

t
s

s

s

t

mt
ns

mt
ns

imm
n

m
n

m
n PPtCitCeQPA    (17) 



28th IWWWFB, L’ Isle sur la Sorgue, France 2013 

 

The unknown expansion coefficients m
nA  are derived by employing the zero velocity condition on the wetted 

surface of the spheroid. Eq. (17) represents a global formulation that covers all possible cases, namely the 
diffraction problem (U=0), the wave resistance problem (ω=0) and the complete forward speed and wave impact 
problem (U≠0, ω≠0). In fact only Q(k,a) need to be changed whilst for the diffraction and the wave resistance 
problems is reduced respectively to  
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The most challenging part as regards the computation of mt
nsC  and mt
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 is the numerical evaluation of Cauchy’s 
Principal Value Integral involved in the infinite series of Eq. (16). However special attention must be given to 
the singularity that occurs at a=±π/2. For the diffraction problem this can be easily avoided adopting the 

ascending series of Bessel function. This however will make the expressions that provide mt
nsC  and mt
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~

 much 
more complicated. In particular the former will be given by  
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that allows separate integrations oven a and k. For the coupled forward speed and wave heading problem one 
must find the roots of the denominator in Eq. (5). In that case the numerical implementation requires the 
calculation of two Cauchy PV integrals in terms of the roots  
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The roots ρ1,2 must be real regardless a. This condition is always satisfied if ωU/g<1/4 and that finding is in 
compliance with the requirement for the existence of an upper bound for the critical frequency ωc=0.25g/U of 
oscillating singularities [10] where the classical linearized solution yields infinitely large wave amplitude. 

Some numerical examples for prolate spheroids of different submergence depth and slenderness ratio will be 
presented at the Workshop together with a comparison against Farell’s [3] and Havelock’s [1] approximations.  
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