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1 Introduction 
 
Investigation of the interaction between free surface 
flows and marine structures is a classical 
hydrodynamic problem and has a wide range of 
applications in many offshore engineering problems. 
It is difficult to study numerically complex free-
surface evolutions and irregular boundaries. The 
challenge is even harsher if the structure is in motion. 
For example, a flow singularity occurs when a body 
impacts the free surface which gives rise to a high 
pressure peak localized at the spray root and makes 
water entry and exit problems difficult. In recent 
years, the Level-Set Method (LSM) has become a 
popular tool for the modeling of two-phase fluid 
flows due to its simple representation of the surface 
curvature and the ease of its implementation, See 
Osher and Fedkiw (2001) for a review. Due to its 
standard form does not guarantee the overall 
conservation of fluid, especially in regions of high 
curvature, the Hybrid Partical Level Set Method 
(HPLS) of Enright etal. (2002) has been proposed to 
improve its conservation properties and accuracy. 
On the other hand, the Immersed Boundary Method 
(IBM) is popularly used to mimic the boundary 
immersed in the fluid flow. In the IBM, a body force 
is introduced to the momentum equations to enforce 
the boundary condition of the structure in the fluid 
(Fadlun et al. 2000). The IBM has the advantage of 
simplifying the grid generation and its inherent 
simplicity to study moving body (Mittal et al. 2005) 
on fixed Cartesian grids. Furthermore, it is very 
convenient to compute forces acting on a body 
namely lift and drag force, because of its appropriate 
treatment in the IBM. These advantages suggest that 
it is well suited to study problems involving a 
moving body with the free surface flow. 
 
Here, we investigate the applicability of the particle 
Level-Set Immersed Boundary Method (LS-IBM) 
for the simulation of breaking waves with obstacle 

and water entry problem. The incorporation of an 
immersed boundary method with a free surface 
capture scheme implemented in a Navier-Stokes 
solver allows the interaction between fluid flow with 
free surface and moving bodies of almost arbitrary 
shape to be modeled. Dam break past a rectangular 
obstacle is modeled using the present model and the 
simulation results using LS-IBM agree well with the 
experimental results in the literature. The LS-IBM is 
also applied to study breaking waves with obstacle 
of different shape for different purpose. In this paper 
only the dam break past a circle obstacle is shown 
for the purpose of demonstration.  

 
2 Mathematical Model 
 
2.1 Governing equations 
 
In the study of 2D wave-structure interactions, the 
incompressible viscous fluid flow is governed by the 
Navier-Stokes equations: 

 
(2.1)                                                                

 
and the continuity equation: 

 
(2.2) 

 
where Cartesian tensor notation is used, (i = 1, 2), uj, 
p and xj are the velocities, pressure and spatial 
coordinates respectively, fi represents momentum 
forcing components, ρ is the fluid density and τij are 
the viscous stress components given by  

                                 
 (2.3) 

 
 

where µ is the fluid viscosity. 
 
2.2 Free surface equations 
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We investigate the motion of two incompressible 
fluids and track the movement of the free surface 
implicitly by the Level Set Method (LSM).  In LSM 
a scalar quantity φ, known as the level set function, 
is specified throughout the domain to represent the 
location of grid cells relative to the surface. Here, we 
define φ to be a signed distance function, which 
measures the shortest distance from the grid cell to 
the free surface (i.e. |∇φ| = 1) and is positive in one 
fluid phase and negative in the other.  The evolution 
of the level set function φ is governed by 

                                                
(2.4)                                                                   

 
In the governing equations, both ρ and µ vary 
dependant on the local fluid phase properties and are 
smoothed over a small distance ε = 2Δx across the 
surface by use of a Heaviside function H to avoid 
numerical instabilities caused by the sharp gradients 
present. We calculate ρ and µ by 

                      
 (2.5) 

 

where,  
               
 

(2.6)                           
 
 
 

At present, we neglect the influence of surface 
tension since we are currently interested in the large 
scale dynamics of gravity waves. 
 
3 Numerical Approach 
 
3.1 Navier-Stokes solver 
 
The Navier-Stokes equations are discretized on a 
staggered grid with p, ρ and µ defined at grid cell 
centers and the velocity components at cell faces. 
We discretize the temporal gradient with a second 
order Runge Kutta Total Variation Diminishing 
(RK-TVD) scheme. Eqs. (2.1) and (2.2) are 
discretized using a fractional step method.                                                                                                                                                                                                                        

   
(3.1) 

 

(3.2) 
 

 
(3.3) 

 
where u** is the predicted velocity, fi is the 
momentum forcing used to enforce the desired 
boundary conditions on an immersed boundary 
interface and △t is the time step. In discretizing the 
convective term in (Eq. 2.1) it is essential to avoid 
the introduction of numerical instabilities due to the 
sharp density gradient at the surface. We employ 
first order upwinding to ensure stability. The 
diffusive term in (Eq. 2.1) is discretized with a 
second order central difference. The time step is 
restricted by the CFL condition and gravity as 
discussed in Kang et al. (2000). The CFL number for 
our simulations is kept below 0.5.  
 
3.2 Free surface solver 
 
Accurate solution of the level set equation (Eq. 2.4) 
is crucial to capture the correct surface physics.  
Here, we discretize φ at cell centers and calculate 
velocity gradients with a fifth order HJ-WENO 
scheme (Jiang and Peng, 2000). Temporal gradients 
are resolved with a third order RK-TVD scheme.  
Since only the location of the surface is of interest, φ 
can be solved in a narrow band close to the interface. 
For the HJ-WENO scheme the narrow band occupies 
six cell widths either side of the surface in all 
directions (Peng et al.1999). As φ is evolved in time 
it may deviate away from being a signed distance 
function (i.e. |∇φ | ≠ 1) requiring reinitialisation. 
Here, we reinitialize φ with an efficient fast 
marching technique at every time step, see Sethian 
(1996) for details.    
 
3.3 Immersed boundary treatment 
 
It is noted that the term fi must be determined prior 
to the computation of the predicted velocities u**. 
This term is prescribed at each time step to establish 
the desired boundary moving velocity Vib. For a time 
–stepping scheme, this force can be expressed as  

 
(3.4) 

 
where RSHi includes the convective, viscous, 
pressure gradient and body force of the governing 
equations. If the forcing fi must yield ui

n+1 = Vib
n+1 on 
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the immersed boundary where Vib
n+1 is the Dirichlet 

boundary condition at the immersed boundary, the 
forcing is given from the equation below, 

 
(3.5) 

 
This forcing is direct in the sense that the desired 
boundary condition can be satisfied at every time 
step but only holds when the immersed boundary 
coincides with the grid. In general, Eulerian grid 
nodes almost never coincide with the immersed 
boundary in practical applications. fi needs to be 
computed at grid points near and not exactly on the 
interface. The value of uf at the forcing points is not 
known and has to be reconstructed using the 
information from the interface and surrounding field. 
In terms of uf that has been predicted by the 
reconstruction, the force on the forcing points can be 
expressed as 

 
(3.6) 

 
 

4 Results 
 
4.1 Dam break past a rectangular obstacle 
 
Fluid flow past a fixed rectangular obstacle is 
simulated to verify that the present LS-IBM 
accurately predicts flow phenomena such as 
separation and wave breaking. In order to compare 
our results directly with the experiments of 
Koshizuka at al. (1995) and numerical simulations of 
Larese at al. (2008) and Gao Mimi (2011), we 
consider a rectangular column of water of initial 
height 2L and width L within a computational 
domain of 4L × 4L (height × length) where L = 
0.072m. An obstacle block with geometry h × 2h, 
where h = 0.024m is used in the experiment and 
numerical simulation, is located at the middle of the 
tank. A schematic view of the problem is shown in 
Figure 1. In this case, we set the immersed boundary 
coincide with the grid line. So the momentum 
forcing term is specified in a way to make the 
velocity magnitude to be equal to the immersed 
boundary velocity at these points. Base on the no-
slip condition on immersed boundary, the velocity 
on these points should be zero. And then we can 
obtain the forcing term which satisfy the desired 
boundary conditions on the immersed boundary.  

  
Figure 1 Sketch of dam break with a rectangular obstacle 

 
Figure 2 comparison of snapshot for the dam break with a rectangular 

obstacle 
 
Figure 2 shows the water profiles at several time 
instants after dam breaks. The numerical results 
using LS-IBM agree well with the experimental 
results and look better than the other two numerical 
simulations. 
 
4.2 Dam break past a circular obstacle 
 
To further demonstrate the capability of LS-IBM in 
simulation of arbitrary bodies, another dam break 
example is presented in this section. We choose a 
circular obstacle that consists of many line segments 
of different slopes to verify the capability of the 
interpolation method. The computational domain is 
4L × 4L (height × length) and dam dimension is 2L × 
L (height × width) where L = 0.6m. The radius of the 
circle is 0.19m and the position of the center is 0.6m 
away from the right side boundary and 0.26m above 
the bottom. A schematic view of the problem is 
shown in Figure 3.  
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Figure 3 Sketch of dam break with a circular obstacle 

 
In this case, the immersed boundary is not aligned 
with the grid plane which makes the problem more 
complicated. The momentum forcing term will act 
only on the points nearest to the immersed boundary. 
In order to render a velocity that is approximately 
equal to immersed boundary velocity for the forcing 
term, an interpolation for the momentum forcing is 
therefore required.  

 
 

Figure 4 Water profiles at several time instants for dam breaking with a 
circle obstacle 

 
Snapshots of this case are shown in Figure 4. Good 
performance can be seen. The results indicate that 
the interpolation method is correct and it can be 
implemented successfully for the fluid-structure 
interaction problem. 
 
5 Conclusions 
 
The Level-Set Immersed Boundary Method (LS-
IBM) technique has been successfully implemented 
to simulate dam breaking with complex-shape 
obstacles. The results perform well and are in good 

agreement with the available experimental results, 
which show that the IBM is very robust for 
complicated geometries. Now, water entry of a 
moving body is being investigated, and some 
preliminary results have been obtained.  
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