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1 Background

The objective of this abstract is to provide a review of models for motion simulation of marine
structures with a special emphasis on wave energy converters. The time-domain model is applied
to a point absorber system working in pitch mode only. The device is similar to the well-known
Wavestar float located in the Danish North Sea. The main objective is to produce a tool that can
accurately simulate the dynamics of a floating structure with an arbitrary geometry provided the
frequency domain coefficients are calculated beforehand. The latter calculation is based on linear
fluid structure interaction (small deformations of the fluid surface and body), inviscid incompressible,
irrotational flow and a linearized Euler-Bernoulli formulation of the fluid pressure. The time-domain
analysis of a floating structure involves the calculation of a convolution integral between the impulse
response function of the radiation force and the unknown body velocity due to an external force. The
convolution integral can be seen as a memory effect where the system response in the past affects
the response in the future. Two different time-domain models will be presented. The first one is
based on a discretization of the convolution integral. The calculation of the convolution integral is
performed at each time step regardless of the chosen numerical scheme. In the second model the
convolution integral is replaced by a system of linear ordinary differential equations. The formulation
of the state-space model is advantageous regarding the computational effort and the robustness of
the solver. Another important feature is the linear-time invariance of the system. In a next step
the influence of the nonlinear hydrostatic behavior of the float is investigated by using a simplified
formulation.

2 Problem formulation

2.1 Truncation of the convolution integral

The equation of motion for the analyzed geometry can be formulated by a momentum equilibrium
condition around the fixed point, see Fig. 1, which leads to the following equation:

(M44 + a∞
44
)ϕ̈4(t) +

∫ t

0

K44(t− τ)ϕ̇4(τ)dτ + C44ϕ4(t) + cptoϕ̇4(t) =

∫

∞

−∞

h4(t− τ)η(t)dτ (1)

Pitch ϕ4(t) is the corresponding degree of freedom around the bearing, indicated with the indices
i = 4, j = 4. M44 corresponds to the mass moment of inertia, a∞44 is the added mass at infinite
high frequencies, K44(t) is the impulse response function of the radiation force, C44 is the hydrostatic
stiffness coefficient, cpto is a constant damping coefficient, representing the linear power take off
system, h4(t) is the impulse response function of the excitation force and η(t) corresponds to the
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surface elevation. The impulse response function of the radiation force can be seen as the system
identity. If we know the response to an impulse, then we know the response to any excitation by
convolution with the impulse response function. The basic work for this formulation of the problem
was laid by W.E. Cummings (1962) [1]. The convolution integral in Eqn. 1 can be expressed by means
of a sum:

∫ t

0

K44(t− τ)ϕ̇4(τ)dτ = ∆t

t
∑

τ=0

K44(t− τ)ϕ̇4(τ) (2)

Expanding the sum in Eqn. 2, we get the following expression:

∆t

t
∑

τ=0

K44(t− τ)ϕ̇4(τ) = ∆t[K44(t)ϕ̇4(0) +K44(t− 1)ϕ̇4(1) + ...+K44(0)ϕ̇4(t)] (3)

The equation of motion can then be written:

(M44+a∞
44
)ϕ̈4(t)+K44(0)ϕ̇4(t)+C44ϕ4(t)+cptoϕ̇4(t) =

∫

∞

−∞

h4(t−τ)η(t)dτ−

∫ t
−

0

K44(t−τ)ϕ̇4(τ)dτ

(4)

The numerical integration of Eqn. 4 only requires the calculation of the integral at the preceding
time-steps and can therefore be considered as a known quantity. A fourth order Runge Kutta scheme
with a constant time step ∆t has been used to evaluate the linear equation of motion given in Eqn. 4.
Drawbacks of this method are i) time consuming ii) the convolution integral needs to be calculated
at each time step iii) the impulse response function needs to be interpolated with the same ∆t as
the time integration, which is not very convenient. The results are shown in the last page of this
abstract. Fairly good agreement can be observed when comparing the numerical discretization of the
convolution integral with an analytical calculation for regular waves, i.e. when a constant damping
coefficient can be assumed.

2.2 Rational approximation to the radiation force

In this section a method is applied to circumvent the drawbacks of the discretization, presented in the
previous chapter. The convolution integral is replaced by an equivalent system of coupled first order
differential equations, which are solved along with the equations of motion of the absorber, S.R.K
Nielsen [2]. The method is based on an initial replacement of the actual frequency response function
of the floating body Hrϕ̇4

(ω) which was calculated by the software WAMIT, [3]. The approximating
rational function is given in the form

Hrϕ̇4
(s) ≈

P (s)

Q(s)
=

p0s
m−1 + p1s

m−1 + ...+ pm−1s

sn + q1sn−1 + ...+ qn

}

s = iω (5)

The unknowns are the coefficients of polynomials P and Q. The parameters p0, p1,..., pm−1 and q0,
q1,..., qn denotes the poles and the zeros of the rational approximation and are all real. The order
of the filter as given by the pair n, m may be chosen freely with the only restriction that m ≤ n.
A rational causal approximation for Hrϕ̇4

can be obtained by the MATLAB control toolbox [4] or
the MSS FDI toolbox [5]. Next, the convolution integral is approximated with the product of the
constants p0, p1,..., pm−1 and the new unknowns i.e the additional state vectors I(t).



∫ t

0

K44(t− τ)ϕ̇4(τ)dτ ≈
[

p0 p1 ... pm−1

]

I(t) (6)

where the time derivation of I(t) is given as follows:

İ(t) =









−q1 −q2 −q3 qn
1 0 0 0
0 1 0 0
0 0 1 0









I(t) +









1
0
0
0









ϕ̇4(t) (7)

We are now able to approximate the convolution integral of the radiation force by inserting Eqn. 6
into Eqn. 1. As a result we end up in having a time-invariant system for the radiation force which is
advantageous regarding computational time and storage requirements.

(M44 + a∞
44
)ϕ̈4(t) +

[

p0 p1 ... pm−1

]

I(t) +C44ϕ4(t) + cptoϕ̇4(t) =

∫

∞

−∞

h4(t− τ)η(t)dτ (8)

2.3 Nonlinear hydrostatic behavior

The change of the hydrostatic pressure at each instantaneous position of the float below the water
plane can be characterized by taking into account a nonlinear hydrostatic behavior. This effect can
be observed at the two extremities of the red curve, see Fig. 2. On the upper left corner, the
float successively dips into the water and on the lower right end of the curve the float starts to
be fully submerged by the water. In between, the derivation of the wetted surface is small, hence
a linear approximation of the hydrostatic moment becomes justifiable. The red curve is a result
of experiments which were carried out at the Hydraulic Laboratory at Aalborg University. In the
following model a simplified formulation of the nonlinear hydrostatic effect is presented, where the
red curve is approximated by a piecewise trilinear curve, see Fig. 2. The nonlinear force is computed
by implementing a displacement control algorithm, i.e. it is assumed that the wave amplitude is zero
in the vicinity of the float.
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Figure 1: Wavestar lab model, froude scaled
1:20
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Hydrostatic experiments
Piecewiese linear approx.

Figure 2: Hydrostatic restoring moment,
piecewise linear approximation



3 Results: Wavestar float - lab model scale 1:20
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Figure 3: Body response under panchromatic
wave excitation, H = 0.1m, T = 2.1s
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Figure 4: Body response under panchromatic
wave excitation, H = 0.1m, T = 2.1s, zoom
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Figure 5: Non linear hydrostatic, simplified
implementation
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Figure 6: Non linear hydrostatic, simplified
implementation, zoom
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