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Reciprocity
Like for many other physical phenomena, potential flow problems for water waves follow the reciprocity 
law: Permuting impulse and response points leaves the response unchanged, although the entire field may 
look very different. Mathematically, this can be expressed as the source and field point symmetry of the
Green’s function, i.e. ( ; ) ( ; )G Gx ξ ξ x . This property appears for self-adjoint boundary-value problems. The
Laplace operator is formally self-adjoint and typical boundary conditions are homogeneous and of the
Dirichlet, Neumann, or Robin type ensuring the self-adjointness of the entire boundary value problem.
Despite the physical relevance of the reciprocity law for the case considered in the following, it will be 
shown how a given choice of non-standard boundary conditions for the Green’s function gives a non-
symmetric result.

Explicit Dirichlet-Neumann operator
The significance of introducing a particular non-symmetric Green’s function is that leads to an explicit linear 
Dirichlet-Neumann operator which maps the velocity potential at the free surface to its normal derivative. 
This operator provides the kinematic closure needed to compute wave transformation by time-integration of 
the free-surface boundary conditions. For non-linear waves this linear operator provides the basis for a 
Dirichlet-Neumann operator expansion as used in the so-called convolution wave model (Shäffer 2005, 
2009), which applies a flexible, all-physical-space version of the high-order spectral method (see West et al. 
1987, Dommermuth and Yue, 1987, Craig and Sulem, 1993, Bateman et al. 2001, and comparisons by 
Schäffer, 2008). This abstract considers the linear operator in one horizontal dimension. The vertical free-
surface velocity is expressed in terms of the horizontal free-surface velocity, but the trivial step of rewriting 
results in terms of the velocity potential and extracting the Dirichlet-Neumann operator is omitted.

Convolution method, spectral method
In the following ( , )u w is the fluid velocity in a Cartesian coordinate system ( , )x z  with z  pointing upwards 
and 0z   at the still-water level. Subscript zero refers to variables at 0z   except for the water depth, h , 
where it signifies constant depth. For mild bottom slopes, the kinematic closure may be given in terms of the 
convolution integral
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for a mildly sloping bottom. The limits of integration are in principle ( , ) ( , )a b    , but for practical 
computation the exponential decay of the impulse response function allows for truncation just several water 
depths away from the observation point, x . Lateral boundaries may also limit the range of integration, where 
reflective conditions may be incorporated by imaging the impulse response function.

For a constant, small slope, xh  , where ( ) xh x h x , (2) reduces to
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while the relevant limits become ( , ) (0, )a b   , and for constant depth the impulse response function is
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The mild-slope result was derived by Matsuno (1993) using conformal mapping and by Schäffer (2005, 
2009) using infinite series differential operators. 

For constant depth, the Dirichlet-Neumann operator may be applied through multiplication by the 
transfer function 0tanhk kh  in wavenumber space. This may be seen by introducing the velocity potential 
and (4) in (1) and applying the convolution theorem.

Relation to boundary integral equations
Although the convolution integral (1) is quite simple, the underlying derivation was rather complicated and 
further generalization towards variable 2DH bathymetry and complex-shaped domains could benefit from a 
new framework of derivation. Observing that (1) is merely a boundary integral, it is relevant to investigate 
the relation to integral theorems. While the convolution approach provides an explicit expression for the 
quantity needed in the kinematics closure, it is recalled that usual boundary integral equation methods for 
water waves are implicit and involve the inversion of dense linear systems. Is it possible to use the versatility 
of boundary integral theorems to further generalize the explicit convolution method?

Scalar Green’s 2nd identity
Green’s 2nd identity is commonly applied for the velocity potential and a Green’s function to obtain
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where ( , )x z   belongs to the boundary,  , subscript 'n  indicates a derivative in the outward normal 
direction, ( , )x z  is zero for points external to the fluid, 2  for internal points, and equals the interior angle 

(typically  ) for observation points on  . Since zw   satisfies the Laplace equation, the BIE is equally 
valid when substituting   by w  and further evaluating this at 0z   gives
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To match the convolution method for constant depth, 0h h , consider the Green’s function constituted by an 

infinite array of vertically aligned alternating sources and sinks with a distance of 02h  between consecutive 
singularities. This definition of the Green’s function is relevant for both 1DH and 2DH. Although the series 
for the 1DH case is divergent, it does have a generalized limit that may be found analytically as
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This Green’s function decays exponentially in the horizontal direction. Consequently, the influence of lateral 
boundaries vanishes just several water depths away from the observation point. While reflective lateral 
boundaries can be accounted for by the image method, we choose to ignore them in following by which (6)
reads
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where 0  is the surface at ' 0z   and b  is the bottom at ' ( ')z h x  . For constant depth, 0h h , both terms 
in the bottom integral vanish, the first one due to the bottom boundary condition for the vertical velocity and 
the second one due to the vanishing Green’s function. Furthermore, the first term in the integration over 0
vanishes, since ' ( ,0; ',0) 0zG x x  . Letting 0  extend over the entire horizontal axis, the remainder of (8) is
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By continuity, ' 'z xw u  , followed by integration by parts, this becomes
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From (7), we get
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which substituted in (10) recovers the result of the convolution method in (4).
While the choice of using w  instead of   in Green’s 2nd identity is successful in providing an 

explicit result for constant depth, it is not clear how this approach could be used for variable depth, where the 
bottom boundary condition generalizes to ' 0n   rather than 0w  . The bottom boundary condition no 
longer annihilates one term leaving a condition on the Green’s function to annihilate the other. This problem 
calls for an alternative approach and one option is as follows.

Vector Green’s 2nd identity
Vector Greens 2nd identity (see Morse and Feshbach, 1953, p 1768) was used by Nwogu (2009) to study 
waves on sheared currents. Following Nwogu (2009, eq. 3.7), but assuming potential flow, provides an 
expression for the normal velocity in terms of the normal and tangential velocities at the boundary. For an 
observation point at 0z  , this reads in 1DH
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where Nv  and Tv  are the normal and tangential velocities

 ( , ) ( , ) ( , ),( , ) ( , )N T x z z xv v u w n n u w n n       (13)

Note that the directions of the Green’s function derivatives are linked to the ‘observation direction’ and thus 
remain vertical and horizontal even for variable depth. 

For constant depth, (12) reduces to (10) and thus the vector form of Green’s 2nd identity provides the 
same result as the scalar form of Green’s 2nd identity used above. This confirms the equivalence with the 
convolution expression (4). The advantage of (12) appears for variable depth, where, as opposed to (8), the 
bottom boundary condition now annihilates the first term in the boundary integral. To get a formulation like 
the convolution integral in (1), which is independent of bottom velocities, the last term in (12) must also 
vanish. This requires that ' ( ,0; ', ') 0xG x x z  on the bottom i.e. a non-physical boundary condition. To keep 

the expression for 0w  explicit, the property ' ( ,0; ',0) 0zG x x   must be retained, but this is easily done just by 
choosing ( ,0; ', ')G x x z  as an even function of 'z .

Symmetric Green’s function; constant bottom-slope
As an intermediate step towards a Green’s function that satisfies the above conditions, regard the symmetric 
Green’s function
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as relevant for ( ) xh x h x  with tanxh   and /(2 )N   where N  is integer. Like (7), this is constituted 
by equidistant, alternating sources and sinks, but now distributed along a circle of radius x  centred at ' 0x  . 
In a suitable limit of vanishing bottom slope (14) reduces to (7). Inspection shows that (14) has 

' ( ,0; ', ') 0xG x x z  on the bottom and thus it does not satisfy the required conditions. However, (14) does 

have ( ,0; ', ') 0xG x x z   on the bottom, where the derivative is now taken with respect to the field point 
abscissa instead of the integration point abscissa. Although this is not the desired property, it does give a hint 
on how to proceed.

Non-symmetric Green’s function and explicit Dirichlet-Neumann operator; constant bottom-slope
Although the required property only relates to the bottom, let us look for a function   that satisfies the 
general condition
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where G  is defined in (14). A solution is 
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which is similar to (14) except for each complex component being rotated by /n N in the complex plane. 
By inspection,   turns out to be a suitable Green’s function that satisfies ' ( ,0; ', ') 0x x x z   on the bottom 

while also satisfying ' ( ,0; ',0) 0z x x  . This Green’s function is not symmetric, since in general we have 
( , ; ', ') ( ', '; , )x z x z x z x z   . Thus   is not invariant to permutation of impulse and response despite the fact 

that the physical problem in question does have this property. 
Using   as Green’s function in (12) while looking at the case of constant bottom slope, what 

remains is
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This expression is exact. Further simplification yields
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by which,

'

1 1 '
( ,0; ',0) csch log

2 2x

x
x x

x x


  

        
  

(20)

For mild slopes, arctan( )xh   may be replaced by xh  and the mild-slope result in (3) is recovered.
Although focus has been on a specific example, it appears that the result (18), while noting that the 

derivative is taken with respect to the field point and not the integration point, is valid in general, if G is a 
Green’s function that for observation points at the surface, 0z  , satisfies homogeneous Dirichlet boundary 
conditions on the bottom and homogeneous Neumann conditions on the surface, ' 0z  .

Concluding remarks
Green’s functions relevant for physical problems obeying the reciprocity law (invariance to source-receiver 
permutation) usually display field-point integration-point symmetry. Yet, it has been shown for such a 
physical problem how a non-symmetric Green’s function obeying non-physical boundary conditions can be 
useful in the derivation of an explicit Dirichlet-Neumann operator viz. the exact solution for 1DH linear 
waves on a constant slope of inclination /(2 )N .
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