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1. INTRODUCTION 

An arrangement of four truncated cylinders 
centered at the corners of a square is a simple model 
of a typical TLP platform. The prediction of wave 
run-up around the cylinders is of great interest for 
the offshore industry, e.g. to determine the height of 
the platform deck above the sea level. 
Computations indicate that resonant wave motion 
may occur inside the four-cylinder structure, which 
can lead to large wave height between structures, 
and also to enhanced wave forces on individual 
columns．If these large wave loads and free-surface 
elevations occur in practice, it would have serious 
implications for the design of large arrays of 
offshore structures. It is therefore important to 
understand when these effects occur, and how they 
might be affected by factors, such as structure form 
and nonlinearity. 

Although some interesting interaction effects 
that arise from nonlinearity have been observed, 
nonlinear effects are difficult to analyze for 
complex geometries. The nonlinear wave 
diffraction by a square array of truncated cylinders 
has received relatively less attention. In present 
study, the interaction between a square array of 
truncated cylinders is investigated in frequency 
domain, based on a Stokes expansion approach. The 
solution for the second-order potential is obtained 
by a boundary-integral equation method. Numerical 
calculation is performed for the wave run-up and 
free-surface elevation to the second order accuracy. 
Numerical results show that the near-trapping 
phenomena occurs inside the four-cylinder structure，
which leads to large wave height. The second order 
contributions to the free surface elevation can be 
considerable especially at critical frequencies.  

2. MATHEMATICAL FORMULATION AND 
METHODS 

We consider the case when a fixed body is 
placed in an incoming wave system with angular 
frequencies ω, amplitude A and in a water of depth 
d. The coordinate system has the z-axis pointing 
vertically upwards and origin is at the undisturbed 

free surface. The incident wave makes an angle β 
with the positive x-axis. We adopt the usual 
framework of potential flow theory, assuming that 
the fluid is incompressible and irrotational, so that 
the governing equation in the fluid becomes 
Laplace's equation for the velocity potential. The 
total velocity potential can be expanded in a 
perturbation series in terms of the wave slope 
parameter ε. 

 Here we are interested only in the periodic 
components. At each order, we depose φ into 
incident (φΙ) and diffracted (φD) potentials: φ(i) =φ(i) 

I

+φ(i) 
D , i=1,2. The incidence potentials are given from 

Stokes’s waves. After introducing the perturbation 
series into the original nonlinear boundary value 
problem (BVP), we can obtain corresponding BVPs 
for the potentials at different orders. The 
second-order problem is complicated by the 
inhomogeneous forcing term in the free-surface 
boundary condition, which is given in terms of 
quadratic products of the first-order potential:  
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where QI represents the contribution from quadratic 
products of the first-order incident potential itself 
and it is subtracted out owing to the free-surface 
condition satisfied by the second-order incident 
potential. v=ω2/g is the infinite-depth wave number 
and g is gravity.

 The first-order and the second-order boundary 
value problems can be solved by boundary integral 
equation formulated by applying Green’s theorem 
to the fluid domain. The solutions of the first-order 
diffraction problems are classical and relatively 
easy to obtain. The second-order diffraction 
problem is significantly more difficult to implement. 
Introducing Green function G corresponding to an 
oscillating source at the frequency 2ω, and applying 
Green’s theorem to φ(2) 

D and G, we can obtain a 
Fedholm integral equation of the second kind for  
φ(2) 

D (Eatock Taylor and Chau, 1992) 
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The coefficient C(x0) can lead to difficulties in 
solving above equation and the integrand has a 
singularity near to the source point. This can be 
overcome by Teng and Eatock Taylor’s (1995) 
method.  

After solving for the first- and second-order 
potentials, the associated forces and moments as 
well as local pressure and wave elevations can be 
obtained directly. We expand the free-surface 
elevation also in perturbation series in ε. The 
expression for the wave elevation is written as 
follows: 
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As velocity potential, the wave elevation can be 
decomposed into a time-independent term and a 
double-frequency term, which in turn can be written 
as a sum of the contributions from the first-order 
potential (η(2) 

q ) and the second-order potential (η(2) 
p ) 
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Each component in Eq. 4 is defined as 
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3. CONVERGENCE TEST 
The convergence of the present solution will 

be examined in this section. The test case 
considered is four vertical cylinders with radius a 
centered at the corners of a square with side length 
4a. The centers of the cylinders are located at (±2a, 
±2a), and the cylinders are numbered 
anti-clockwise with cylinder number 1 located in 
the first quadrant. A local coordinate system is 
located at each cylinder with the origin at the centre 
of the cylinder and the local axes are parallel to the 
axes in the global coordinate system. Fig. 1 shows 
the definition of the global and the local coordinate 
systems. In the test cases the direction of the 
incident wave is 45 degrees with respect to the x 
direction and the water depth h=3a.  

Only a quarter area is discretized by using 
simplification on its geometry symmetry. The first 
region S1 on the free surface is meshed in a round 
form with an outer radius b and totally NF 
quadrilateral elements are employed. In the 
outermost region S3, Hankel’s asymptotic 
expansions are substituted into the integrand. The 

regions S2 and S3 do not need to be discretized. The 
cylinders are discretized with NB quadrilateral 
elements. There are nz panels in the vertical 
direction and nc panels in the circumferential 
direction.  

 
Fig. 1 Definition of global and local coordinate systems 

For this configuration we have chosen ka =1.1, 
where k is the linear wave number. The different 
parameters that describe the discretization are listed 
in Table 1. From Fig. 2 we see that the two test 
cases give almost the same results even though the 
discretization in case 2 is much coarser than the 
discretization in case 1. We conclude that 
convergence is achieved. The curves obtained by 
the present results and Malenica et al’s (1999) 
results are in good agreement which confirm that 
convergence has been achieved. 
Table 1 Parameters associated with the discretization of 

the body and the free surface. 
Case Body surface Free surface 

 nz nC NB NF b 
1 25 64 1600 5647 12a 
2 24 48 1152 3027 10a 

0 0.5 1 1.5 2

(θ1-45)/π

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

|η
(2

) |/
(k

a2
)

Case1
Case2
Malenica et al (1999)

 
Fig. 2 The total second-order wave run-up amplitude 

around the cylinder 1 

4. NUMERICAL RESULTS AND DISCUSSION 
In this section we give the results for 

second-order quantities for the square array of 
truncated cylinders. In this case, nc=48, nz=24, and 
nr (the number of panels in the radial direction) =8 



are used to mesh the body surface. 3027 
quadrilateral elements are used to mesh S1 and the 
outer radius b of the first region on the free surface 
is equal to 10a. The mesh on the body surface and 
free surface are shown in Fig. 3.  

 
Fig. 3 The body surface and free surface mesh of the 

structure without pontoons  

With application the direct method for the 
second problems, the second order potential is 
computed, and furthermore the second order 
kinematics, like second order wave elevation can be 
computed. Figs. 4~7 show the max free-surface 
elevations at the following five points: T1=(2.707a, 
2.707a), T2=(1.293a, 1.293a), T3=(0.0, 0.0), 
T4=(-1.293a, -1.293a), and T5=(-2.707a, -2.707a) 
for the non-dimensional frequency ka from 0.1~1.8 
and the non-dimensional incident wave amplitude 
kA=0.2. One can observe that the max free-surface 
elevation predicted by the linear wave theory is 
significantly increased especially at T2 when ka is 
near 1.68. The individual second-order components 
|η(2) 

q | and |η(2) 
p | are also large when ka is near 1.68 

but due to their phase differences the associated 
total harmonic second-order elevation is small. At 
the same time, the second-order time-independent 
component that can be computed directly from the 
first order potential for monochromatic incident 
waves has a considerable effect on the total wave 
field and so should not be neglected during design. 
When ka is near 0.42, the linear elevation at these 
points is seen to be small, whereas the elevation 
predicted by the second-order wave theory is now 
large especially in Figs. 5~6. It is clear that the 
above-mentioned large increases in wave elevation 
only occur over a very narrow range of frequencies, 
close to what we might now describe as the 
near-trapping. This highly significant result 
suggests that near-trapping of the second-order 
wave occurs when its frequency coincides with the 
linear near-trapping frequency as found by 
Malenica et al. (1999). If ka apart from near-trapping 
frequency, large magnification effects  
would not be anticipated.  

Figs. 9~11 show the variation of the maximum 
wave run-up around the cylinders with the 
non-dimensional frequency ka=0.42 and the 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
ka

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ξ /
A

Linear wave theory
Second order wave theory

 
Fig 4. The max free-surface elevation at T1.  
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Fig 5. The max free-surface elevation at T2.  
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Fig 6. The max free-surface elevation at T3.  

 
non-dimensional incident wave amplitude kA=0.2. 
The results predicted by both linear wave theory 
and the second-order wave theory are shown. These 
figures illustrate that the effect of the second-order 
nonlinearity on the wave run-up becomes very 
significant at this frequency. At the same location, 
the linear wave theory largely under-predicts the 
wave height. The second order harmonic 
component’s contribution to the free surface 
elevation plays a strong role. The second order 
diffraction should be included into the design 
process for air gap rather than ignored. 

All these above results confirm the importance 
of the influence of interaction between cylinders on 
the final results. 
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Fig. 7 The max free-surface elevation at T4. 
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Fig. 8 The max free-surface elevation at T5. 
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Fig. 9 Max wave run-up around cylinder 1 
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Fig. 10 Max wave run-up around cylinder 2 
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Fig. 11 Max wave run-up around cylinder 3 

5. Conclusion 
Nonlinear diffraction of regular waves by a 

square array of truncated cylinders is investigated in 
frequency domain. Numerical calculation is 
performed for the wave run-ups and free-surface 
elevation by both linear wave theory and the 
second-order wave theory. All the results confirm 
the importance of the influence of interaction 
between cylinders. Near-trapping is shown to play a 
strong role, not only for the first-order solution but 
also for the second-order solution when the 
second-harmonic of the wave frequency coincides 
with the frequency of the trapped mode. The second 
order contributions to the free surface elevation can 
be considerable especially at critical frequencies. 
The second order diffraction should be included 
into the design process for air gap rather than 
ignored. 
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