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1. Introduction

The velocity potential of a transient source of
arbitrary strength and in arbitrary three-dimen-
sional motion is derived, wherein a thin elastic
plate of infinite extent is assumed to cover the sur-
face of water. This potential is fundamental to the
analysis of various types of body motion in deep
water under the influence of waves. As a sam-
ple application, the potential of a time-harmonic
source with forward speed is obtained from the
transient source by specifying the appropriate sour-
ce strength and motion.

Wave motion due to fundamental line and point
singularities with time-dependent strength submer-
ged in water with an elastic cover and an inertial
surface was investigated previously by Chowdhury
& Mandal (2006), Lu & Dai (2006, 2008a, 2008b).
Basically, two kinds of unsteadiness were consid-
ered, namely, instantaneous or time-harmonic sin-
gularities.

2. Mathematical formulation

Consider a fixed, rectangular coordinate sys-
tem O-xyz where (xy)-plane coincides with the
undisturbed upper surface of water, and the posi-
tive z-axis points upwards. The initially quiescent
fluid of infinite depth is assumed to be inviscid,
incompressible and homogeneous. Upper surface
is covered by a thin layer of elastic material of uni-
form density with the lateral stress. The motion in
the fluid is generated due to a point mass-source of
time-dependent strength which starts operating at
time t = 0. The linearized initial-boundary-value
problem is formulated within the framework of po-
tential flow. Position of a source and its strength
at time t ≥ 0 are given by ~ξ(t) = (ξ(t), η(t), ζ(t))
and µ(t), where ζ(t) < 0 and µ(t) = 0 for t < 0.

The motion in the fluid can be described by
a velocity potential Φ(~x, t) (t > 0). In the linear
theory, Φ satisfies in the fluid domain

∆Φ = µ(t)δ(~x − ~ξ(t), (1)

where ∆ denotes the three-dimensional Laplace
operator, ~x = (x, y, z), δ is the Dirac delta func-
tion.

If w(x, y, t) denotes the small vertical displace-
ment of the upper surface below its equilibrium
position, then the linearized kinematic and dy-
namic conditions at the upper surface are given
by

∂w/∂t = ∂Φ/∂z,

D∆2
2w + Q∆2w + M∂2w/∂t2+

ρ∂Φ/∂t + gρw = 0 (z = 0), (2)

where

D = Eh3
1/[12(1 − ν2)], M = ρ1h1,

∆2 ≡ ∂2/∂x2 + ∂2/∂y2; ρ is the density of the
fluid; g is the acceleration of gravity; E, ν, ρ1, h1,
are the Young’s modulus, the Poisson’s ratio, the
density and the thickness of the plate, respectively.
Moreover, since the disturbance must vanish at
infinity, it is required that

lim
z→−∞

∇Φ = 0, lim
R→∞

∇Φ = 0 (t ≥ 0), (3)

R2 = (x − ξ(t))2 + (y − η(t))2.

The initial conditions at z = 0 are:

Φ = w = ∂w/∂t = 0 (t = 0). (4)

There are some particular cases of this prob-
lem. If the elastic parameter D is made zero, but
Q = −T (T > 0), then the plate-covered surface
reduces to the flexible membrane. If in addition
also surface density of plate M = 0, then upper
boundary of fluid becomes the free surface with
surface tension. As D = Q = 0, the plate-covered
surface reduces to the inertial surface which rep-
resents the effect of a thin uniform distribution of
non-interacting floating matter, for example, bro-
ken ice. If an addition also M = 0, then upper
boundary of fluid becomes the clean free surface.

The initial-value-problem (1)-(4) is solved by
standard method. The solution of this problem
can be written as

Φ = µ(t)(1/r1 − 1/r2) + φ, (5)



where r2
1 = R2 + (z − η(t))2, r2

2 = R2 + (z +
η(t))2. In order to obtain the formal solution for
the harmonic function φ(~x, t), it is convenient to
introduce a combination of the Laplace transform
with respect to t and the Fourier transform with
respect to spatial variables x and y.

The formal integral expression for the function
φ(~x, t) can be written as

φ = 2ρ

∫ t

0
µ(t)

∫

∞

0

ω(k)

ρ + Mk
ek(z+η(τ))J0(kR(τ))×

sin(ω(k)(t − τ))dkdτ, (6)

where

ω(k) =

√

k(Dk4 − Qk2 + gρ)

ρ + Mk
, (7)

J0 is the zeroth-order Bessel function of the first
kind. If D = Q = M = 0, the solution (6) is
consistent with the velocity potential for clean free
surface and coincides with the result by Wehausen
& Laitone (1960) [Eq. (13.49].

Eq. (7) is known as the dispersion relation. It
is known that there is a limitation on the compres-
sive force Q. The condition Q < Q∗ = 2

√
gρD

provides steadiness of the floating elastic plate.
In the present analysis, it is assumed also that
Q < Q0 < Q∗, where Q0 is defined by the condi-
tion of the positive group velocity cg(k) = dω/dk
for all wave numbers k ≥ 0. The method of de-
termination Q0 was given by Bukatov (1980) for
a fluid of finite depth. The value Q0 and its at-
tendant k0 are found from the conditions cg(k0) =
dcg(k0)/dk = 0. For deep water, the value k0 is
determined as the positive root of the polynomial
Dk4

0(8Mk0 + 15ρ)− 3gρ2 = 0 and the value Q0 is
equal to

Q0 =
Dk4

0(4Mk0 + 5ρ) + gρ2

k2
0(2Mk0 + 3ρ)

.

At M = 0, the values k0 and Q0 are determined
explicitly

k0(D/gρ)1/4 = 5−1/4 ≈ 0.669,

Q0/
√

gρD =
√

20/3 ≈ 1.491.

Fig. 1 shows the non-dimensional values Q0/
√

gρD
and k0(D/gρ)1/4. It can be seen that the values
k0 and Q0 decrease with increasing M from zero.

All considered cases are divided into 2 groups.
For elastic cover, flexible membrane and surface
tension, both the phase cf (k) = ω(k)/k and group
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velocities cg(k) have minimal values, denoted by
Uf = cf (kf ) and Ug = cg(kg), respectively. Here
kf is correspond to the wave number at which
dcf (kf )/dk = 0, and analogously kg < kf is de-
fined by the expression dcg(kg)/dk = 0. For iner-
tial surface and clean free surface, both the phase
and group velocities are the monotone functions.

3. Velocity potential of translating and os-

cillating source

The velocity potential (5) can be applied for
different particular cases of source motion. One
of the most interesting case presents a source of
oscillating strength, starting to oscillate at t = 0
and moving with constant velocity u in the direc-
tion Ox. The potential of a time-harmonic source
with forward speed is obtained from the transient
source by specifying the appropriate source strength
and its motion: µ(t) = µ0 cos σt, ξ(t) = ξ0 +
ut, η(t) = η0, ζ(t) = ζ0. Furthermore, a coor-
dinate system moving with velocity u in direction
Ox (x̄ = x − ut) is used. The location of the
translating source is fixed in this moving system
and the velocity potential (5) can be written as

Φ(x̄, y, z, t) = µ0 cos σt

(

1

r1
− 1

r2

)

+ φ(x̄, y, z, t),

where

φ = 4

∫ π/2

0

∫ t

0
cos σ(t − τ)

∫

∞

0
F (k, θ)×

cos(k cos θ(X + uτ)) sin(ω(k)τ)dkdτdθ, (8)

F (k, θ) =
µ0ρω(k)

π(ρ + kM)
ek(z+ζ0) cos(kY sin θ),

X = x̄ − ξ0, Y = y − η0,

and the range of the θ-integration is reduced in
the quadrant [0, π/2]. Using the function-product



relations for sine and cosine, Eq. (8) becomes

φ =

∫ π/2

0

∫ t

0

∫

∞

0
F (k, θ)×

(sin Ψ1 + sinΨ2 + sinΨ3 + sinΨ4)dkdτdθ, (9)

where

Ψ1,2(k, τ ; t) = [ω(k) + σ]τ ± k(X + uτ) cos θ − σt,

Ψ3,4(k, τ ; t) = [ω(k) − σ]τ ± k(X + uτ) cos θ + σt.

The principal physical features of the wave motion
in far field can be determined by the asymptotic
analysis of double integral for k and τ in (9) using
the method of stationary phase. An especially im-
portant role is played by the critical (stationary)
points at which

∂Ψn/∂k = ∂Ψn/∂τ = 0 (n = 1, ..., 4).

The function Ψ1 has no critical (stationary)
points in the integration angle [0, π/2]. The func-
tion Ψ2 has no more than 2 critical points. The
equation

ω(k) + σ − kU = 0 (U = u cos θ) (10)

has 2 roots denoted by k
(1)
2 and k

(2)
2 only if u >

U1(σ) = cg(k
∗

1) and 0 < θ < θ1 where the wave
number k∗

1 satisfies the equation kcg(k)−ω(k) = σ
and θ1 = cos−1(U1/u). It follows from the disper-
sion relation (7) that k∗

1 → kf and U1 → Uf at
σ → 0. If the conditions mentioned above do not
hold, the function Ψ2 has no the critical points.

The values k
(i)
2 (i = 1, 2) are defined as the posi-

tive roots of the polynomial

Dk5 − (Q + MU2)k3 − U(ρU − 2σM)k2+

(ρg + 2ρσU − σ2M)k − ρσ2 = 0 (11)

satisfying Eq. (10). The wave motions corre-

sponding k
(i)
2 propagate upstream (X > 0) or down-

stream (X < 0) depending on the sign of the dif-

ference cg(k
(i)
2 ) − U .

The function Ψ3 has always only one critical
point. The equation

ω(k) − σ + kU = 0 (12)

has one zero k3 for any θ ∈ [0, π/2]. The value k3

is defined as the positive root of the polynomial
(11) satisfying Eq. (12). The wave motion cor-
responding the wave number k3 propagate always
downstream.

The function Ψ4 has no more than 3 critical
points. The equation

ω(k) − σ − kU = 0 (13)

has always one root k
(1)
4 and two additional roots

k
(2)
4 , k

(3)
4 only at σ < σ∗ = ω(kg) − kgUg and

U3 < U < U2. The functions U2(σ) and U3(σ) are
determined as follows: U2 = cg(k

∗

2), U3 = cg(k
∗

3).
Here the values k∗

2 < kg < k∗

3 are the roots of the
equation

ω(k) − kcg(k) = σ. (14)

It follows from the dispersion relation (7) that
k∗

2 → 0, k∗

3 → kf and U2 → ∞, U3 → Uf at
σ → 0, but k∗

2, k∗

3 → kg and U2, U3 → Ug

at σ → σ∗. If for given σ < σ∗ the velocity
u > U2(σ), three roots exist for θ2 < θ < θ3, how-
ever if U3(σ) < u < U2(σ) then three roots exist
only for 0 < θ < θ3, where θ2 = cos−1(U2/u) and

θ3 = cos−1(U3/u). The values k
(j)
4 (j = 1, 2, 3) are

determined as the positive roots of the polynomial

Dk5 − (Q + MU2)k3 − U(ρU + 2σM)k2+

(ρg − 2ρσU − σ2M)k − ρσ2 = 0

satisfying Eq. (13). The wave motions corre-

sponding the wave numbers k
(j)
4 propagate up-

stream if cg(k
(j)
4 )−U > 0 and downstream other-

wise.
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Fig. 2 shows the variation of Uj (j = 1, 2, 3)
with σ for the case of the ice cover. The following
input data are used: E = 5 GPa, ν = 0.3, Q =
0, ρ = 1025 kg/m3, ρ1 = 922.5 kg/m3, h1 =
0.5 m. The curves U1, U2, U3 divide the (σU)-plane
into four regions Gn (n = 1, ..., 4). There are all
six waves in far field for values σ and U from the



region G1: k
(1)
2 , k

(2)
2 , k3, k

(1)
4 , k

(2)
4 , k

(3)
4 . There are

four waves for the regions G2 and G3: k
(1)
2 , k

(2)
2 , k3,

k
(1)
4 and k3, k

(1)
4 , k

(2)
4 , k

(3)
4 , respectively. There are

only two waves for the region G4: k3, k
(1)
4 .

Figure 3.

Fig. 3 represents the similar picture for capilla-
ry-gravity waves. The input data for water at 20o

are used: T = 0.0728 N/m, ρ = 998 kg/m3.
The basic properties of the flexural-gravity wa-

ves generated by oscillating pressure moving over
ice plate were investigated by Bukatov & Cherkesov
(1977), Bukatov (1980) and Bukatov & Yaroshenko
(1986) for 2D and 3D problems and the fluid of
finite depth. In this abstract, these results are
presented in more simple form for deep water.

Figure 4.

For inertial surface (D = Q = 0), the function
Ψ2 has only one critical point, because Eq. (10)
has one zero k2 for any θ ∈ [0, π/2]. The zero
k2 is always greater than k3. For Ψ4, there are
two critical points for certain values of θ only at

σ <
√

gρ/M . Eq. (13) has 2 roots k
(1)
4 and k

(2)
4

with k
(1)
4 < k

(2)
4 at U < U∗ = cg(k

∗

4) where k∗

4 is
the root of Eq. (14). The value k∗

4 is defined as
the positive root of the polynomial
M3k4 + 3ρMk2(ρ + Mk) + ρ3(k − 0.25g/U2) = 0

satisfying Eq. (14). For u < U∗, both k
(1)
4 and

k
(2)
4 exist for θ ∈ [0, π/2]. However, when u > U∗,

k
(1)
4 and k

(2)
4 exist only for θ > cos−1(U∗/u). For

clean free surface (D = Q = M = 0), we have well
known result: k∗

4 = 0.25g/U2, U∗ = 0.25g/σ.
Numerical results for broken ice with h1 =

0.5, 1, 1.5, 2 m are presented in Fig. 4. There

are four waves for the region G1: k2, k3, k
(1)
4 , k

(2)
4 .

Only two waves k2, k3 exist for the region G2.
The foregoing analysis is necessary, in partic-

ular, for the solution of wave radiation problem
of a submerged body with forward speed. More
detailed results for the hydrodynamic load of the
sphere will be presented at the Workshop.
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