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1. Introduction

The velocity potential of a transient source of
arbitrary strength and in arbitrary three-dimen-
sional motion is derived, wherein a thin elastic
plate of infinite extent is assumed to cover the sur-
face of water. This potential is fundamental to the
analysis of various types of body motion in deep
water under the influence of waves.
ple application, the potential of a time-harmonic
source with forward speed is obtained from the
transient source by specifying the appropriate sour-
ce strength and motion.

Wave motion due to fundamental line and point
singularities with time-dependent strength submer-
ged in water with an elastic cover and an inertial
surface was investigated previously by Chowdhury
& Mandal (2006), Lu & Dai (2006, 2008a, 2008b).
Basically, two kinds of unsteadiness were consid-
ered, namely, instantaneous or time-harmonic sin-
gularities.

As a sam-

2. Mathematical formulation

Consider a fixed, rectangular coordinate sys-
tem O-xyz where (zy)-plane coincides with the
undisturbed upper surface of water, and the posi-
tive z-axis points upwards. The initially quiescent
fluid of infinite depth is assumed to be inviscid,
incompressible and homogeneous. Upper surface
is covered by a thin layer of elastic material of uni-
form density with the lateral stress. The motion in
the fluid is generated due to a point mass-source of
time-dependent strength which starts operating at
time ¢t = 0. The linearized initial-boundary-value
problem is formulated within the framework of po-
tential flow. Position of a source and its strength

—

at time ¢ > 0 are given by (t) = (£(¢),n(t),¢(t))
and pu(t), where ((t) < 0 and u(t) = 0 for ¢ < 0.

The motion in the fluid can be described by
a velocity potential ®(Z,t) (¢ > 0). In the linear
theory, ® satisfies in the fluid domain

AP = p(t)5(T — £(t), (1)

where A denotes the three-dimensional Laplace
operator, ¥ = (x,y, z), 0 is the Dirac delta func-
tion.

If w(z,y,t) denotes the small vertical displace-
ment of the upper surface below its equilibrium
position, then the linearized kinematic and dy-
namic conditions at the upper surface are given
by

Ow/ot = 0P /0z,

DAZw + QAsw + MO*w/ot*+

po® /0t + gpw =0 (z=0), (2)

where
D = Eh}/[12(1 — v*)], M = p1h,

Aoy = 0%/02° 4+ 02 /0y?; p is the density of the
fluid; g is the acceleration of gravity; E, v, p1, h1,
are the Young’s modulus, the Poisson’s ratio, the
density and the thickness of the plate, respectively.
Moreover, since the disturbance must vanish at
infinity, it is required that

lim V& =0,

Z——00

lim ve=0 (>0, ()

R® = (z—&(t)* + (y — n(1))>.

The initial conditions at z = 0 are:

®=w=0w/ot=0 (t=0). (4)

There are some particular cases of this prob-
lem. If the elastic parameter D is made zero, but
Q = —T (T > 0), then the plate-covered surface
reduces to the flexible membrane. If in addition
also surface density of plate M = 0, then upper
boundary of fluid becomes the free surface with
surface tension. As D = @ = 0, the plate-covered
surface reduces to the inertial surface which rep-
resents the effect of a thin uniform distribution of
non-interacting floating matter, for example, bro-
ken ice. If an addition also M = 0, then upper
boundary of fluid becomes the clean free surface.

The initial-value-problem (1)-(4) is solved by
standard method. The solution of this problem
can be written as

Q= pu(t)(1/r1 —1/r2) + ¢, (5)



where 72 = R2 + (z — n(t))?, 73 = R® + (z +
n(t))2. In order to obtain the formal solution for
the harmonic function ¢(Z,t), it is convenient to
introduce a combination of the Laplace transform
with respect to ¢ and the Fourier transform with
respect to spatial variables x and y.

The formal integral expression for the function
¢(Z,t) can be written as

o= [[uto) [ ST R
sin(w(k)(t — 7))dkdr, (6)

where

(7)

_ |k(Dk* — Q% + gp)

Jo is the zeroth-order Bessel function of the first
kind. If D = @ = M = 0, the solution (6) is
consistent with the velocity potential for clean free
surface and coincides with the result by Wehausen
& Laitone (1960) [Eq. (13.49].

Eq. (7) is known as the dispersion relation. It
is known that there is a limitation on the compres-
sive force (). The condition @ < Q. = 2+/gpD
provides steadiness of the floating elastic plate.
In the present analysis, it is assumed also that
Q < Qo < Qy, where Qg is defined by the condi-
tion of the positive group velocity cq(k) = dw/dk
for all wave numbers £ > 0. The method of de-
termination Q)9 was given by Bukatov (1980) for
a fluid of finite depth. The value @y and its at-
tendant kg are found from the conditions ¢, (ko) =
deg(ko)/dk = 0. For deep water, the value kg is
determined as the positive root of the polynomial
Dk§(8Mko + 15p) — 3gp? = 0 and the value Q is
equal to

Qo — Dk (4Mkq + 5p) + gp*
07 T R2(2Mkg + 3p)

At M = 0, the values kg and Qg are determined
explicitly

ko(D/gp)t/* = 5714 =~ 0.669,
Qo/v9pD = V20/3 ~ 1.491.

Fig. 1 shows the non-dimensional values Qg /+/gpD

and ko(D/gp)'/*. Tt can be seen that the values
ko and )y decrease with increasing M from zero.

All considered cases are divided into 2 groups.
For elastic cover, flexible membrane and surface
tension, both the phase c¢(k) = w(k)/k and group
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velocities ¢4(k) have minimal values, denoted by
Up = cp(ky) and Uy = cy4(ky), respectively. Here
ks is correspond to the wave number at which
dcy(ky)/dk = 0, and analogously k, < kj is de-
fined by the expression dcy(ky)/dk = 0. For iner-
tial surface and clean free surface, both the phase
and group velocities are the monotone functions.

3. Velocity potential of translating and os-
cillating source

The velocity potential (5) can be applied for
different particular cases of source motion. One
of the most interesting case presents a source of
oscillating strength, starting to oscillate at ¢ = 0
and moving with constant velocity u in the direc-
tion Ox. The potential of a time-harmonic source
with forward speed is obtained from the transient
source by specifying the appropriate source strength
and its motion: u(t) = pocosat, &(t) = & +
ut, n(t) = no, ¢(t) = (p. Furthermore, a coor-
dinate system moving with velocity v in direction
Ox (x = x — ut) is used. The location of the
translating source is fixed in this moving system
and the velocity potential (5) can be written as

1 1
(I)('Tvyvz7t) = Mo COSUt( - ) + ¢(j7yazat)v
1 T2

where

(b:4/07r/2/0tcosa(t_T)/Ooop(k,e)x

cos(k cos (X + ut)) sin(w(k)7)dkdrdo,

popw (k)
m(p+ kM)

X:j_g()) Y:y_7707

(8)

F(k,0) = F(#0) cos(kY sin6),

and the range of the #-integration is reduced in
the quadrant [0,7/2]. Using the function-product



relations for sine and cosine, Eq. (8) becomes

¢:/0”/2/0t/0°°p(k,9>x

(sin Uy + sin Wy + sin Uy 4 sin Wy )dkdrdl, (9)

where
Uy ok, 73t) = [w(k) + o]m £ k(X 4 ur) cos§ — ot,

U3 4(k,7;t) = [w(k) — o]T £ k(X + ur) cos 6 + ot.

The principal physical features of the wave motion
in far field can be determined by the asymptotic
analysis of double integral for k£ and 7 in (9) using
the method of stationary phase. An especially im-
portant role is played by the critical (stationary)
points at which

OV, 0k = 0V, /or =0 (n=1,...,4).

The function ¥; has no critical (stationary)
points in the integration angle [0, 7/2]. The func-
tion Wy has no more than 2 critical points. The
equation

wk)+o—kU=0 (U=mucosb) (10)
has 2 roots denoted by kél) and k§2) only if u >
Ui(o) = cg(k7) and 0 < § < 6; where the wave
number ki satisfies the equation kcgy(k)—w(k) = o
and 01 = cos™1 (U /u). Tt follows from the disper-
sion relation (7) that k — kf and U; — Uy at
o — 0. If the conditions mentioned above do not
hold, the function W9 has no the critical points.
The values k:g) (i = 1,2) are defined as the posi-
tive roots of the polynomial

Dk® — (Q + MUk — U(pU — 20 M)k*+

(11)

(pg + 2pcU — > M)k — po® =0
satisfying Eq. The wave motions corre-

(10).
sponding k:g) propagate upstream (X > 0) or down-
stream (X < 0) depending on the sign of the dif-
ference cg(k:g)) -U.

The function W3 has always only one critical
point. The equation

wk)— o+ kU =0 (12)

has one zero k3 for any 6 € [0,7/2]. The value k3
is defined as the positive root of the polynomial
(11) satisfying Eq. (12). The wave motion cor-
responding the wave number k3 propagate always
downstream.

The function ¥4 has no more than 3 critical
points. The equation

wk)—oc—kU=0 (13)

has always one root kfll) and two additional roots

DB only at o < o = w(ky) — k,U, and
Us < U < Us. The functions Us(o) and Us(o) are
determined as follows: Us = ¢4(k3), Us = c4(k3).
Here the values k3 < k; < k3 are the roots of the
equation

w(k) — keyg(k) = 0. (14)

It follows from the dispersion relation (7) that
ks — 0, k§—>kfandU2—>oo, U3—>Ufat
o — 0, but k3, k3 — ky; and Uz, U3 — U,
at ¢ — o*. If for given 0 < o* the velocity
u > Uy(0o), three roots exist for 3 < 6 < 03, how-
ever if Us(o) < u < Uz(o) then three roots exist
only for 0 < 6 < 63, where = cos™(Uz/u) and
03 = cos~ (U3 /u). The values k:ff) (j =1,2,3) are
determined as the positive roots of the polynomial

DE® — (Q + MUk — U(pU + 20 M)k*+

(pg — 2poU — > M)k — po® =0
(13). The wave motions corre-
sponding the wave numbers kfl])

stream if cg(kflj )) — U > 0 and downstream other-

satisfying Eq.
propagate up-

wise.
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Fig. 2 shows the variation of U; (j = 1,2,3)
with o for the case of the ice cover. The following
input data are used: £ =5 GPa, v = 0.3, Q =
0, p = 1025 kg/m3, p1 = 922.5 kg/m3, hy =
0.5 m. The curves Uy, Us, Us divide the (cU)-plane
into four regions Gy, (n = 1,...,4). There are all
six waves in far field for values o and U from the



region G: kél),kéQ),kg,kil),kf),kf). There are
four waves for the regions G5 and G3: k:él), l{:§2), ks,
kfll) and ks, kfll), kf), kf’), respectively. There are

only two waves for the region Gy4: ks, kgl).
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Fig. 3 represents the similar picture for capilla-
ry-gravity waves. The input data for water at 20°
are used: T = 0.0728 N/m, p = 998 kg/m>.

The basic properties of the flexural-gravity wa-
ves generated by oscillating pressure moving over
ice plate were investigated by Bukatov & Cherkesov
(1977), Bukatov (1980) and Bukatov & Yaroshenko
(1986) for 2D and 3D problems and the fluid of
finite depth. In this abstract, these results are
presented in more simple form for deep water.
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For inertial surface (D = @ = 0), the function
U5 has only one critical point, because Eq. (10)
has one zero kg for any 6 € [0,7/2]. The zero
ko is always greater than k3. For W4, there are
two critical points for certain values of 6 only at

o < +v/gp/M. Eq. (13) has 2 roots kil) and kf)

with &Y < 52 at U < U* = ¢, (k%) where k} is
the root of Eq. (14). The value kj is defined as
the positive root of the polynomial
M3k* + 3pME?(p + Mk) + p3(k — 0.25g/U?) =0
satisfying Eq. (14). For u < U*, both 1@(11) and
k:f) exist for 0 € [0, 7/2]. However, when u > U*,
k:z(f) and kf) exist only for § > cos™1(U*/u). For
clean free surface (D = @ = M = 0), we have well
known result: kj = 0.259/U?, U* = 0.25¢g/0.
Numerical results for broken ice with h;
0.5,1,1.5,2 m are presented in Fig. 4. There
are four waves for the region Gi: ko, ks, k:il), 1@(12).
Only two waves ko, k3 exist for the region Gbs.
The foregoing analysis is necessary, in partic-
ular, for the solution of wave radiation problem
of a submerged body with forward speed. More
detailed results for the hydrodynamic load of the
sphere will be presented at the Workshop.
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