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1. Introduction 

 

Added resistance in waves it’s a well-known effect which has been studied by numerous scientists over 

the last decades. The traditional calculation tools are able to predict with good accuracy the peak of the 

added resistance RAO; the peak usually occurs for L  . When instead the incident wave lengths are 

shorter than the ship length, the diffraction effects dominate the unsteady wave field and the accuracy of 

the numerical results decreases. In this case alternative methods are preferred but the literature material is 

limited; the most followed methodologies are suited only for specific hull forms and speeds. 

Another possible approach is ray theory, which has been successfully applied to the problem of wave front 

tracing in many different fields like atmosphere physics or electromagnetism [1].  

The present work proposes a numerical application of ray theory for the evaluation of added resistance in 

short waves. The theory has been presented by Hermans [3] and afterwards revised by Kalske [4]; here 

some additional features are presented by the authors. Few significant comparisons with model tests 

outline a good agreement of current results with experimental data.   

 

2. Unsteady potential 

 

A ship advancing in regular waves with constant speed U is considered. The origin of the Cartesian 

coordinates system is located at midship on the undisturbed free surface with the x-axis positive in 

forward direction and the z-axis positive in upward direction.  

The typical assumptions are made of  inviscid and incompressible fluid and irrotational flow. The flow is 

then characterized by the velocity potential Φ, which satisfies the Laplace equation 0   in the fluid 

domain. Because of the short wave lengths the ship motions are neglected and the boundary condition on 

the ship hull is expressed by 0n    on SH.  

The linearized free surface condition was obtained by Sakamoto and Baba [2], who assume U as small 

parameter and 
0

( , , ) ( , , )( , , , ) ( , , , )
r

x y zx y z t x y y tz x z     where 
r
 is the double body potential, 

0
 is the 

steady potential and  is the unsteady potential. With a non-conformal coordinates transformation 

' , ' , '
r

x x y y z z      the free surface condition for the unsteady potential is given as: 

 
2

1 1
0   on   ' 0   and   

' ' '
r r rt

u v z
g t x y z g


   

   
      

   
 

 
 
 

u  

The vector ru represents the double body flow velocities computed at the undisturbed free surface and 

when computing the previous equation its derivatives must be neglected.  

From now on the transformed coordinates ( ', ', ')x y z are considered and the primes are omitted. 

 

3. Ray Expansion 

 

We seek for the unsteady potential an asymptotic solution for large k  of the form: 
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with 
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/k g , 
0 0

cosk U    and  is the incident waves direction according to the sea-keeping 

convention.  
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The functions )(S x and ( , )a kx are the phase and amplitude functions, with  
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Only the first term of the series is considered, this means that at caustics the solution will become 

multivalued thus it will not be possible to evaluate the complete unsteady wave field with this expansion. 

Substituting   in the Laplace equation and in the free surface boundary condition two equations are found 

one for )(S x and one for 
0
( )a x ,: 
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The differential operators are two dimensional and are evaluated in the z = 0 plane; ( , )
r

u v U v u  and 

U g  . The amplitude function equation is the transport equation. It can be obtained by using the wave 

action equation instead of the linearized free surface boundary condition; in that case the expression for 

MS changes as:  2 1 .S SMSA MS    v v  

The phase function equation is an eikonal equation, an equation of the form   , 0F S x x , and can be 

solved using the method of characteristics.  

Introducing  , Sp q  p , the eikonal equation is written as:  
4

01F     v p p p . The PDE is then 

transformed into a system of five ODE with parameter  , which represents a coordinate along the rays; 

the rays are defined in the Cartesian space by  ,dx d dy d  .  

From the Charpit-Lagrange equations the following system is obtained: 
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The amplitude function is also solved along the rays and the transport equation is expressed as:   
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Because MS contains the second spatial derivatives of S, three additional equations, see [4], are introduced 

to evaluate Sxx, Sxy, Syy along the rays:  
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4. Initial Conditions 

 

Far ahead of the ship   0
S Sx  on : ax by c   , with 

PP
c L . The line   is parameterized by r . The 

conditions for p and q are given by the eikonal equation together with the chain-rule: ' ' 'S px qy  , which 

yields bp aq . The coefficients ( , )a b are related to the incident wave angle by: tan( )
2

a

b


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Three different cases are separated depending on the wave angle: 
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The initial conditions for px, py, qy are found through numerical differentiation of  and 
p q

r r

 

 
, which is 

straightforward since the rays are parallel straight lines in the far field. 

 

The initial condition 0 0( )a  for the transport equation is given by  the expression of the unsteady wave 

amplitude, which after substituting the ray expansion yields: 
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The boundary condition 0n    on the ship hull must be satisfied by the superimposition of the 

incident and reflected rays. Again after substituting the ray expansion, the boundary condition is expressed 

as: 
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Assuming the incident rays are known these conditions together with the eikonal equation are sufficient to 

compute the reflected rays.   

 

5. Added Resistance and Numerical Solution 

 

Added Resistance is computed by pressure integration over the ship waterline; in fact, since we are 

interested in short waves, the unsteady disturbance decays rapidly along the z-axis and its mean effect can 

be evaluated on the mean waterline: 
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In order to implement numerically this theory we should focus on the evaluation of the double body flow 

velocities and their derivatives, because while solving the ODE system these quantities should be known 

in several (x,y) locations of the mean free surface for each integration step.  



In our algorithm the double body flow is calculated, up to the second spatial derivatives, by a panel 

method program using direct evaluation of the Green function coefficients in each collocation point of the 

free surface mesh. The third spatial derivatives of the double body potential are evaluated numerically and 

finally all the base flow quantities are obtained at any (x,y) location through numerical interpolation.  

Since the free surface mesh is modeled around the ship waterline we are dealing with scattered data 

interpolation and derivatives evaluation; the method we chose is based on multiquadratics radial basis 

functions which offers a good control on the accuracy level and reasonable computational effort.  

With this approach the most time consuming computations are done only once for each advance speed U.  

The present study proved that ray theory can efficiently be implemented to evaluate added resistance in 

short waves and, as shown in the figure, the predicted values are in good agreement with the experiments 

results. Great care should be given to the treatment of the basis flow, in terms of evaluation, differentiation 

and interpolation. On the other hand the ray expansion shown here is not appropriate to represents the 

complete unsteady wave field and thus the current theory cannot be extended to include additional effects, 

i.e. wave breaking, unless the ray expansion is also modified. 

 

 
Figure 1: Added Resistance for the Series 60 cb 0.8 hull,  0.1 < Fn <0.2 
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