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The applications of Computational Fluid Dynamic (CFD) 
based on Navier-Stokes equations in ship and offshore 
hydrodynamics are still limited due to the heavy 
computational time. Potential-flow models are much 
faster compared with typical CFD solvers. It appears 
natural to apply the CFD in the region where the non-
potential-flow effects matter (e.g. viscous flow separation 
and local wave breaking), and to solve Laplace equations 
elsewhere (See for instance Colicchio et al. [1] and 
Kristiansen & Faltinsen [2]). Many free-surface problems 
involving large volume structures are dominated by 
potential flow effects in the whole water domain. The 
objective of this study is to find an efficient numerical 
method to solve the fully-nonlinear potential-flow 
problems with the presence of free surface and a body. 
The problems considered in this abstract are in 2D. 
However, the experiences should also be useful guidance 
in 3D studies.  

 
It is a strong tradition in marine hydrodynamics for 
solving the Laplace equation by Boundary Element 
Method (BEM) instead of field solvers, e.g. Finite 
Element Method (FEM), Finite Difference Method (FDM) 
and Finite Volume Method (FVM). An argument has been 
that a BEM solver based on simple fundamental solution 
to Laplace equation only needs to distribute singularities 
with unknown strength on the boundaries of the 
computational domain. Wu & Eatock Taylor [3] were 
perhaps the first in our field to give credit to the FEM-
based field solver. Their comparison between FEM and 
BEM for a fully-nonlinear wave making problem suggests 
that FEM is more efficient than BEM in terms of both 
CPU time and computer memory. The memory required 
by a conventional BEM is O(N2). Here N is the number of 
unknowns on the boundaries of the computational domain. 
A direct method such as the Gaussian elimination or LU-
factorization takes O(N3) operations in order to solve the 
resulting matrix equation. Typical iterative solvers, e.g. 
the Gauss-Seidel method and the Krylov subspace 
Generalized Minimal Residual (GMRES), would yield 
O(N2) operation counts and consequently O(N2) CPU time. 
Therefore, both CPU time and required memory for 
conventional BEM increase dramatically with increasing 
number of unknowns, which was considered as the 
bottleneck of the BEMs. Recent developments in BEM 
showed that the bottleneck of the BEMs no longer exist if 
the accelerated matrix-free methods, e.g. the pre-corrected 
Fast Fourier Transform method (pFFT) and the fast 
multipole method (FMM), are combined with the BEM 
solvers. Asymptotically, the pFFT method needs O(NlogN) 
memory and O(NlogN) CPU time, and the FMM needs 
O(NlogN) memory and O(N) CPU time. According to the 
authors’ knowledge in the field of marine hydrodynamic, 
no direct comparative study has been made between the 

field solvers and the accelerated BEM solvers. 
 
In the first part of the abstract, we study a mixed 
Dirichlet-Neumann Boundary Value Problem (BVP) in a 
2D rectangular box by five different methods, two of 
which are BEM-based and the other three are categorized 
as field solvers. The size of the rectangular box is chosen 
as the same as studied by Wu & Eatock Taylor [3] in their 
wave making problem. The box length L is 40 times the 
box height h. See the definition in Fig.1. The Dirichlet 
boundary condition on the top surface and the Neumann 
boundary condition on the rest of the surfaces are given 
by the velocity potential function  

                    cosh ( ) sink y h kx   .              (1)                     

Here k is the wave number. h is the depth of the tank. x 
and y are the horizontal and vertical coordinates. The 
origin of the coordinate is located at the mid-point of the 
top surface with positive y-axis pointing upwards. The 
considered methods are a conventional constant BEM, a 
FMM accelerated constant BEM (FMM-BEM), a FVM 
and our two newly developed field solver based on 
Lagrangian Polynomial Cells (LPC) and Harmonic 
Polynomial Cells (HPC), respectively. The constant BEM 
code and FMM accelerated constant BEM code are based 
on open source codes with their basis explained in Liu & 
Nishimura [4]. The cell-centered control volumes are used 
to discrete the fluid domain in the FVM method adopted 
in this study. Some key features of the present FVM are 
summarized as follows: The integrations on the faces of 
the control volumes are approximated by midpoint rule; A 
linear reconstruction technique following [5] is applied 
for the approximation of the velocities and the velocity 
potential at the midpoint of the faces; The velocity at the 
center of the control volume is calculated by Gauss 
divergence theorem. The present FVM is second-order 
accurate with a uniform grid resolution.  
 
Lagrangian Polynomial Cell (LPC) method: The idea of 
the present Lagrangian Polynomial Cell (LPC) method 
follow from the Lagrangian elements used in FEM (see 
e.g. Chung [6]). The desired interpolation functions of 
Lagrangian elements are constructed simply by a tensor 
product of the one-dimensional counterpart of x and y 
directions, respectively. We define a cell that contains 9 
nodes, as shown in Fig.2. Node 1-8 are on the boundaries 
of the cell while node 9 is in the cell. We assume the 
distribution of the velocity potential can be approximated 
by polynomials. For simplicity and without loss of 
generality, we assume the origin of the coordinate system 
has the same location as point 9 of the cell. The velocity 
potential within the cell is approximated as  
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Plugging j  , jx x  and jy y  (j=1,...,9) into the 

above equation, one obtains the unknown coefficients ja  

(j=1,...,9) as the linear combinations of  j  (j=1,...,9).  

For the nodes in fluid but not on boundaries, the Laplace 
equation is enforced by analytically taking 

 2 2 2 2x y      on both sides of Eq.(2). The 

Dirichlet and Neumann boundary conditions are satisfied 
in similar way with the assistance of Eq.(2). The 
considered LPC method has second-order accuracy. 
 
Harmonic Polynomial Cell (HPC) method: The Harmonic 
Polynomial Cell method uses the harmonic polynomials 
as the basis of the interpolation functions. The harmonic 
polynomials satisfy Laplace equation. They are in two 
dimensions given by the real and imaginary parts of 
(x+iy)n, where n is an integer. Therefore, we assume the 
following interpolation function  
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Plugging j  , jx x  and jy y  (j=1,...,8) into 

Eq.(3), the unknown coefficients jb (j=1,...,8) can be 

found as the linear combinations of  j  (j=1,...,8). This is 

equivalent to consider a sub Dirichlet boundary-value 
problem in the cell with Laplace equation as the 
governing equation. The boundary conditions are given 
on a set of discrete nodes on the boundaries , i.e. the 
edges of the cells. That is the reason we do not use 
information on points in the cell, e.g. point 9, to construct 
the interpolation functions. The solution at point 9 is 
equal to the interpolated value by Eq.(3), i.e. 

 9 9 9,x x x y    . The information on point 9 is 

used by the neighbor cells as illustrated by an example in 
Fig.2, where point 9 is on the boundary of the neighbor 
cell centered at point 5. The local indices of the points of 
the neighbor cell are marked with prime in Fig.2. This 
technique then provide continuity of the flow. The 
Dirichlet and Neumann boundary conditions are enforced 
by using Eq.(3) and its normal derivative on the boundary 
nodes, respectively. Note that Eq.(3) contains all the 3rd 
order harmonic polynomials and one 4th order polynomial 
term. Another 4th order harmonic polynomial term 

 3 3x y xy  was not included. It is beneficial to have 

higher-order terms in order to reduce the wave dispersion 
errors in the time-domain analysis. 
 
The boundary elements used in the BEM and FMM-BEM 

analysis are uniformly distributed on both horizontal and 
vertical surfaces. Ny  constant elements are distributed 

on each of the vertical boundary and 40Nx Ny
elements on each horizontal boundary. Correspondingly, 

 Nx Ny  square meshes are used in the field solvers, i.e. 

FVM, LPC method and HPC method. Hence the mesh 
size in x-direction  x and that in y-direction y are 

/x y L Nx    /h Ny . All the methods in the 

comparison use the iterative GMRES solver. The residual 
error to stop the iterations is set to 0.5E-8 in GMRES. 
Proper preconditioners are used in order to achieve fast 
convergence. Fig.3 shows the CPU time for the five 
different solvers. The results are plotted against number of 
unknowns corresponding to constant BEM and FMM-
BEM. It clear that the conventional BEM takes more CPU 
time than the FMM-BEM and all the three field solvers. 
This is in agreement with Wu & Eatock Taylor [3] who 
compared FEM and conventional BEM. We also noted 
that FMM-BEM performs best in terms of CPU time with 
the mesh resolution.  
 
The accuracy of the methods are depicted in Fig.4 and 
Fig.5 by comparing the L2 errors, which are defined as  
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Here num
if  and an

if are the numerical and analytical 

solutions, respectively. The results in Fig.4 correspond to 
a shallower water case with kh=1.0, while Fig.5 is for 
deeper water with kh=6.283. For the FMM-BEM method, 
the errors on both the Dirichlet surface and Neumann 
surface are shown. The solution on the Neumann surface 
shows faster convergence than that on the Dirichlet 
surface in the shallower depth case (kh=1.0), while the 
opposite is seen with deeper water depth (kh=6.28). The 
errors of conventional constant BEM are not included in 
the comparison, since they are the same as that of FMM-
BEM. The LPC and FVM methods show similar accuracy 
on the uniform rectangular meshes adopted in this study.  
However, separate numerical tests with FVM on distorted 
unstructured meshes showed unsatisfactory lower-order 
accuracy, which will not be shown here due to limited 
space. It is obvious from the comparison that the HPC 
method is the most accurate among the five methods in 
the comparisons. 
 
The numerical details in each solvers used in the 
comparison, e.g. mesh arrangements, equation solvers and 
matrix preconditioners etc. may not be optimal. One can 
always be smarter to improve the numerical details to 
have a faster or more accurate solution, for instance, by 
using non-uniform/stretched elements on the vertical 
surface with smaller element size close to the horizontal 
surface y=0 and larger elements elsewhere. However, one 
will not be able to change the asymptotic behavior of the 
methods in terms of computational time.     
      



In the next, we will show some time-domain results based 
on the LPC and HPC methods. In all the time-domain 
analysis presented in this paper, we have used a 4th order 
explicit Runge-Kutta scheme to integrate free-surface 
conditions in time. The method is first verified by 
studying a linear wave making problem. The normal 
velocity following the Airy's linear wave theory is 
prescribed at the position of the wave maker. Uniform 
grids in both horizontal and vertical directions are used in 
the analysis. Using only 15 unknowns per wave length 
(   15 x 15 y  ) gives very satisfactory results for 

both shallow and deep water depth cases compared with 
the analytical results. On the contrary, LPC method with 
the same mesh resolution does not seem to recover 
accurately the wave length. The numerical wave profile 
for a deep-water depth obtained by the LPC method with 
  20 x 20 y   is plotted in Fig.6 with gradual 

change of wave length away from the wave maker, 
indicating the wave dispersion errors [7]. We have also 
verified the HPC method for frequency-domain heave 
added mass and damping of a semi-submerged circular 
section. 
 
The fully-nonlinear wave making problems are also 
studied. Because the free surface is a sharp interface 
within the context of potential flow theory, the surface 
tracking method is used to describe the free surface 
instead of the more time-demanding surface capturing 
techniques, such as the Volume of Fluid (VOF) method. 
The Lagrangian approach is applied to track the free-
surface particle at the position of the wave maker, while a 
semi-Lagrangian approach is adopted elsewhere on the 
free surface. A body-fitted and free surface-fitted 
structured mesh, which is updated each time step, is used 
in all the analysis. Fig.7 shows the wave amplitudes of 
different harmonics along a wave tank. The piston wave 
maker is located at the left end of the tank while a 
numerical wave beach is applied on the other end. The 
stroke of the wave maker is 0.113m and the oscillation 
period of the wave maker is 3.5s. The water depth is 0.4m. 
According to linear wave maker theory, the generated 
wave amplitude and wave length away from the wave 
maker are A=0.042m and λ=6.78m, respectively. 
Therefore, we have the wave amplitude parameter 
αൌA/hൎ0.105, water depth parameter β = h/λ  ൎ0.059 
and Ursell number Ur=α/β2ൎ30.2.  The numerical result 
shows good agreement with the experiments by Chapalain 
et al.[8]. For the same case, You & Faltinsen [9] have 
obtained equally good results by using a 3D fully-
nonlinear BEM. Both the numerical results with and 
without a small Rayleigh damping are shown in the figure. 
It is also seen that, even though  we used only 25% of the 
damping suggested by Chapalain et al.[8], we observed 
non-negligible damping effects on the higher-order 
harmonics. This indicates the necessity to find a more 
rational way of estimating the damping effect due to the 
boundary layers. For this non-breaking wave case, the 
turbulence at the free surface and the bulk viscosity of the 
water are not expected to be the dominant sources of 

damping. A linear boundary layer theory may be used to 
estimate the damping due to the boundary layers, as it is 
done in the sloshing tank [10].  
 
The nonlinear monochromatic waves propagating over a 
submerged bar is also studied. The same problem was 
experimentally investigated by Luth et al [11]. We refer to 
Luth et al [11] for the details of the configuration of the 
tank and the submerged bar. Due to the limited pages, we 
only present the time history of the wave elevations at two 
points. One point is above the top surface of the bar and 
the other one is located near to the foot of the slope at the 
lee side. Fig.8 compares of the numerical wave elevation 
with the experiments. The wave period T=2.02s, wave 
amplitude A=0.01m and water depth h=0.4m were 
considered in the analysis. 
 
As our future study, 2D floating bodies with vertical or 
non-vertical wall sides with nonlinear free-surface 
conditions will be studied by using the efficient HPC 
method. A Lagrangian approach should be used in 
satisfying the free-surface conditions near the body. To 
what extend we can model the overturning or nearly 
vertical free surface should be investigated. Since the 3D 
harmonic polynomials can easily be constructed, the HPC 
method will also be applied to 3D problems. 
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Fig.1.Definition of the 2D rectangular box. 

 
Fig.2. Sketch of 2 neighbor cells used in LPC and HPC methods. 
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Fig.3. Comparison of CPU time. 
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Fig.4. Comparison of L2 errors. kh=1.0.   
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Fig.5. Comparison of L2 errors. kh=6.28.            
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Fig.6 Wave profile by LPC method. λ=20∆x=20∆y. 
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 Fig.7. The wave amplitude for different harmonics along the 
tank. 
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Fig.8a. Wave elevation at x=12.5m 
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Fig.8b. Wave elevation at x=17.3m.


