
A SURFACE-PIERCING BODY MOVING ALONG THE FREE SURFACE   

Y.A. Semenov1, G.X. Wu1, B.S. Yoon2  

1 Department of Mechanical Engineering University College London, London WC1E 6BT, UK 
2 School of Naval Architecture and Ocean Engineering University of Ulsan, Republic of Korea 

E-mail: semenov@a-teleport.com, g.wu@ucl.ac.uk, bsyoon@ulsan.ac.kr

  
ABSTRACT 
We consider the two-dimensional steady free surface flow past a body of arbitrary shape floating on water of infinite depth. The 
fluid is assumed to be inviscid, incompressible and the flow is irrotational; surface tension of the free surface is neglected. Our 
concern is with the periodic waves generated downstream and the splash jet separating from the body. The problem is relevant to 
the bow and stern flows when a ship is moving at a constant speed on the free surface. An advanced hodograph method is 
employed to derive an analytical expression for the complex potential of the flow. The problem is then reduced to a system of two 
integro-differential equations in terms of the velocity modulus on the free surface and the slope of the body surface. The Brillouin 
–Villat criterion is used to determine the location of the point of flow separation from the body while the equivalent condition of 
ventilation is applied to determine the location of the splash jet separation arising at the fore part of the body. Results showing the 
effect of gravity on the flow detachment and the waves downstream are presented over a wide range of Froude numbers.  

1. INTRODUCTION 
Two-dimensional free surface flows past a fixed floating 

obstacle is a challenging analytical and numerical problem, 
which is relevant to the generation of bow and stern flows in 
ship hydrodynamics.  

The study of bow/stern flows started to receive much 
attention in the late 1960s [1 – 3], aimed to reduce drag of 
ships and find bow geometry providing a waveless free 
surface. In order to formulate a mathematical problem, an 
assumption about the flow topology should be done. Several 
configurations have been proposed for bow flows [3]: a) the 
free surface approaches smoothly the bow; b) a splash 
appears near the bow; c) a jet rises along the bow and the 
returning is neglected.  

Dagan and Tulin [3] used asymptotic methods to 
consider type a) solutions for small Froude numbers and 
type c) for large Froude numbers. Dias and Vanden-Broeck 
[4] studied a specific solution of type b) with presence of a 
stagnation point at the splash jet by solving complete 
nonlinear problem in the whole flow domain. Vanden-
Broeck and Tuck [5] showed that type a) solutions are not 
possible for flat bows in water of infinite depth. In the water 
of finite depth Vanden-Broeck [6] found a range of 
supercritical Froude numbers for which type a) solutions are 
possible.  

However, there are a limited number of studies 
considering both bow and stern flow-regions within the 
framework of one problem. The study of the complete 
problem may be important for ships whose length scale is 
comparable with the typical wave length generated 
downstream. In the present study we choose two kinds of  
body geometries which are the flat plate and the circular 
cylinder. The first one gives the possibility to study splash 
jet separation for bow flows and the second one requires the 
complete solution of the problem including both for the bow 
and stern. 

The flow topology adopted in the present study 
corresponds to the case b) proposed by Dagan and Tulin [3] 
and very close to that by Dias and Vanden-Broeck [4] 
considering the splash jet appearing near the bow.  

Our solution method follows that proposed by Joukovskii 
(1890) for steady jet flows of an ideal fluid, the key step 
being the analytical construction of two governing functions 
in a parameter plane: the complex velocity and the derivative 
of the complex potential with respect to the parameter 
variable defined in an auxiliary parameter region. In 
reference [7] the method has been extended to study 
unsteady and gravity flows with the free surface. It gave a 
new way to derive the expression for the complex velocity 
accounting the variation of the velocity magnitude along free 
surfaces and the variation of the velocity angle along the 
wetted part of the body.  

For a given body shape, we derive an integro-differential 
equation in the velocity angle along the body and integral 
equation in the velocity magnitude along the free surface. 
These integral equations must be solved numerically to 
obtain the solution.  

2. THEORETICAL ANALYSIS 
Figure 1(a) shows the flow configuration for the bow/stern 
flow model. The fluid is inviscid and incompressible and the 
flow is steady and irrotational. Far upstream, the flow is 
uniform with constant velocity U and the free surface is flat 
and parallel to the x-axis. The origin of the x-y coordinate 
system is placed at the point of separation O on the body. 
The acceleration due to gravity g is in the negative y 
direction. The distance of the lowest of the point of body to 
the undisturbed free surface it h. The disturbance of the body 
to the flow will generate waves downstream. 

The shape of the body is given by the angle ß as a 
function of the spatial coordinate s along the body, which 
starts at the separation point O. At the stagnation point A, the 



streamline splits into two streamlines, which go along the 
upper and lower sides of the body. The first streamline forms 
the splash jet which truncated at such distance from the body 
where it does not influences the main flow. The second 
streamline starting at the stagnation point A detaches at point 
O of the body and generates the wave downstream. The 
Brillouin –Villat criterion has been applied to determine the 
location of point O. The equivalent condition of ventilation 
has been applied to determine the location of point B at 
which the pressure becomes equal to pressure on the free 
surface.  

  

Figure 1. Sketch of the surface-piercing circular cylinder 
moving along the free surface: (a) the physical plane; (b) the 
parameter plane.  

The Bernoulli equation can be written for reference point 
at upstream infinity  
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where  is the liquid density; pa is the atmospheric pressure;  
Using the radius of the cylinder R as the characteristic 

dimension and the inflow velocity U as the characteristic 
velocity, Eq. (1) takes the form  
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are the dimensionless velocity and coordinate, respectively. 
Eq. (2) also determines the velocity magnitude along the free 
surface where 0pc . 

Joukovskii proposed to map a parameter plane 

 

onto the 
planes of two functions, which are the complex potential 
W i

 

and the function ln dW dz . If ( )W

 

and 

( )

 
are known functions of the parameter variable , the 

velocity field and the function mapping the parameter plane 
onto physical plane can be determined as follows:  

exp[ ( )]
dW

dz
,    0

0

( )
dW d

z z d
dW dz

.         (3)  

We choose the first quadrant of the  -plane, where the 
complex variable i

 
(see figure 1b), to correspond to 

the physical plane. A conformal mapping allows us to fix 
three points O, C and D as shown in figure 1b, then a

 
and i

 
are the images of points A and C in the physical 

plane, which should be determined from additional 
conditions. The interval 0 1

 
of the imaginary axis 

corresponds to the free boundary OC

 
(the region of the 

stern flow), the interval 1

 
corresponds to the free 

surface CD (the region of the bow flow). Interval 0 b

 

of the real axis corresponds to the wetted part OAB

 

of the 
body and b

 

corresponds to the upper side of the 

splash jet BD .  
The function dW dz

 

satisfies the following boundary 

conditions  
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where ß is the slope of the wetted part of the body and the 
upper side of the splash jet. By using the integral proposed 
in [7], the final expression for the complex velocity takes the 
form  
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where 0 (0)v v

 

and 0 (0)

 

are the velocity magnitude 

and direction at point O , respectively. 
For steady free-boundary flows, the stream function 

 

takes a constant value along the body and free boundaries, 
and therefore the region boundary in the W-plane forms a 
polygonal region. According to Chaplygin’s singular point 
method [8], to determine the function ( )W W , it is 

sufficient to analyse all singular points where the mapping is 
not conformal. The function ( )W W

 

has singularities at 

points O ( = 0), A ( = a), C ( = i), which correspond to the 
corner points of the region boundary in the  -plane and the 

  
A 

O 

D 

C

 
C

 

x 

y 

 
R

  

O

   

CC

 

A

 

D

 

D

 

i 

a

 
a) 

b) 

h

 
B 

b 

B 

  



W - plane. The analysis of the behaviour of the function 
arg( )W at each corner point makes it possible to determine 
the order of the singularities in the expression ( )W W , 

whose differentiation yields 
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where K is a real scale factor. 
Dividing Eq. (7) by Eq. (6), we obtain the derivative of 

the mapping function 
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whose integration along the imaginary axis in the parameter 
region provides the free boundaries OC and CD

 

in the z-
plane. The parameters a and K and the functions ( )v

 

and 

( )

 

are determined by solving integro-differential 

equations derived from boundary conditions and physical 
considerations.  

The region of the flow corresponding to splash jet maps 
to in the parameter plane as seen from figure 1. 

Then the asymptotic expression for the derivative of the flow 
potential in the region of the splash jet is obtained from Eq. 
(7) , dW d K . By integrating Eq. (7) and using the last 

asymptotic expression it is possible to express the parameter 
variable as function of the potential W

 

and then 
determine the complex velocity using Eq.(6). This technique 
overcomes the logarithmic singularity at infinity in the 
parameter plane and makes it possible to predict relatively 
long thin jets.   

The free-surface elevations for flow past the circular 
cylinder at Froude number F = 1 and three submergences are 
shown in figure 2. The wave steepness increases with the 
submergence while the wavelength somewhat decreases. For 
case (c) in figure 2 the steepness reaches its maximal value 
for which the free surface forms an angle of 1200. For larger 
submergence, the iteration procedure diverges, which may 
correspond to wave breaking on the wave crest.    

The free surface profiles near the cylinder are shown in 
figure 3. It is seen that the location of the stagnation point 
shown as an open circle is very close to the free surface and 
the flow rate 0 through the splash jet is quite small. Such 
thin splash jets in real cases are destroyed due to interaction 
with air, and they return to the free surface as a spray. The 
similar thin splash jets and the location of the stagnation 
point near the free surface were predicted by Yeung [9] 
using a numerical method. The separation of main flow 
occurs at the upstream part of the cylinder so that the angle 

 

is negative. With increase of submergence the magnitude 
of the angle 

 

also increases. 

 

Figure 2. The free surface profile at Froude number 1F

 

for depth of submergence (a) / 0.036h R , (b) / 0.087h R , 
(c) / 0.164h R . 

 

Figure 3. The free surface profile near the circular cylinder 
for cases (a) and (c) shown in figure 2.  

  

Figure 4. The free surface profile at Froude number 0.3F

 

for three depths of submergence. 

a)

 
b)

 
c)

 



From comparison results presented in figures 2 and 4 it is 
seen that separation of the main flow occurs at the rear part 
of the cylinder when the wave length becomes smaller than 
the wetted part of the cylinder. At small Froude numbers the 
splash jet becomes too thin that is not shown in figure 4.  

The presented solution makes it possible to study flow 
past a half-submerged flat plate moving along the free 
surface as a special case. We choose the length between the 
trailing edge of the plate and the stagnation point as a 
characteristic size L, because the total wetted length of the 
plate is unknown a priory and should be determined from 
the solution of the problem. Then the Froude number 

/F U gL .  

In figure 5 are shown the effect of Froude number on the 
free surface profiles. The open circles show the location of 
the stagnation point while the closed circles show the point 
where the splash jet separates and free-falling under gravity. 
The interaction between the splash jet and the main 
incoming flow is not considered. Mathematically it means 
that the splash jet moves on the second sheet of the Riemann 
surface.  

From figure 5 it is seen that the distance between the 
stagnation point and the point of flow separation increases 
with increase of the Froude number. For weightless fluid, 
F= , the splash moves along the plate to infinity without 
separation. It should be noted that the ordinate of the trailing 
edge of the plate is located above the undisturbed free 
surface for higher Froude number.   

 

Figure 5. The free surface profile near the flat plate at the 
angle of attack a=200 for three Froude numbers. 

Figure 6. Free surface waves generated by the flat plate at 
the angle of attack a=300: F=1.55 (solid lines), F=2 (dashed 
lines), F=3 (dotted lines), F=10 (dash-dotted lines). 

3. CONCLUSIONS 
A complete nonlinear solution for a surface-piercing circular 
cylinder moving along a free surface is presented together 
with a special case of a plate. The method employed leads to 
the derivation of an analytical expression for the complex 
potential defined in the first quadrant of the parameter plane. 
The obtained solution includes both the bow and the stern 
flow regions.  

The presented numerical results show how the free-
surface shapes change as the submergence of the cylinder 
increases to its maximal value of a nonbreaking wave crest. 
It is shown that the wave profile downstream of the body 
corresponds to progressive waves in a fluid of infinite depth. 
The width of the splash jet in the bow region increases with 
both the Froude number and the submergence. The flow rate 
at the splash jet tends to zero as Froude number tends to zero.  

The method presented allows one to study a more 
intricate geometry of the body, in particular a geometry that 
reflects more ship hulls.  
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