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1) Introduction
Galin’s theorem is used to revisit the linearized Wagner problem based on the so-called flat disk ap-

proximation. Galin’s theorem is mainly used for solid-solid contact when the shape of the contact surface
is elliptic. We can hence reconsider the theoretical developments by Scolan and Korobkin (2001, denoted
Part I in the sequel) applied to the elliptic paraboloid.

2) Theoretical developments
A formulation of Galin’s theorem can be found in Vorovich et al (1974) for example, it reads:

Theorem: Let the functions (G,F, P, I) defined as follows:
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that means that I is a polynomial in (x, y) of the same degree as P .

A generalization of this theorem is given in Kalker (1973 and 1990). We assume in the sequel that Galin’s
theorem can be inverted: If I is polynomial in (x, y), say with degree M , then P is polynomial as well with

same degree M .

We apply this theorem in order to find the displacement potential φ which is solution of the Boundary
Value Problem formulated in Korobkin and Scolan (2006). This BVP reads















φ,xx + φ,yy + φ,zz = 0 z < 0
φ = 0 z = 0, (x, y) ∈ FS(t)
φ,z = −h(t) + f(x, y) z = 0, (x, y) ∈ D(t)
φ → 0 (x2 + y2 + z2) → ∞,

(4)

where the regions FS(t) and D(t) are disconnected parts of the plane z = 0 and correspond to the free
surface and the wetted area of the body, respectively. A closed curve, which separates the regions FS(t) and
D(t), is denoted Γ(t) and is referred to as the contact line. The Neumann condition on D(t) depends on
the penetration depth h and on the shape function z = f(x, y) of the penetrating body. The origin of the
coordinate system in which the shape is defined is centered at the initial contact point. From the BVP (4)
we derive an integral equation
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S(x0, y0, t)dx0dy0
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(x − x0)2 + (y − y0)2
= h(t) − f(x, y) (x, y) ∈ D(t), (5)

where S(x0, y0, t) denotes the planar Laplacian of φ: S(x, y) = φ,xx + φ,yy. By solving the integral equation
(5), we obtain a Poisson equation for φ which satisfies the following boundary condition

φ = 0 on Γ(t). (6)

Additional condition is suggested to prescribe along the contact line. This condition implies that not only
the displacement potential φ(x, y, 0, t) and the vertical displacement φ,z(x, y, 0, t) but also the horizontal



displacements φ,x(x, y, 0, t) and φ,y(x, y, 0, t) are continuous through Γ(t). With account for (6) the latter
condition can be presented as

φ,n = 0 on Γ(t) (7)

where φ,n = φ,x(x, y, 0, t)nx + φ,y(x, y, 0, t)ny and n = (nx, ny) is the unit normal vector along the contact
line Γ(t).

3) Application of Galin’s theorem
We now condider the elliptic paraboloid whose shape function is given by

f(x, y) =
x2

A2
+

y2

B2
(8)

where (A2, B2) are twice the curvature radii at the initial contact point, denoted (rx, ry). The RHS of (5)
is a polynomial of degree 2. Then, according to Galin’s theorem, the planar Laplacian S can be written as
a polynomial of degree 2 as well, say

S(x, y) =
1√
F

(

b00 + b20x
2 + b02y

2
)

(9)

where b00, b20 and b02 are unknown coeffcients at that stage. Vorovich et al (1974) detailed the calculation
of the polynomials I(x, y) in equation (2). The identification of each coefficient of 1, x2 and y2 on both
hands of equation (5) leads to

2b00bS00 + b20b
3S01 + b02b

3S10 = 2h (10)
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where b = ka, k2 = 1−e2 and Sij are known functions of eccentricity e in terms of standard Elliptic Integral
functions K(e) and E(e). The three equations (10) to (12) are used to calculate (b00, b20, b02) in terms of
(A,B, h, a, b). However it should be noted that (a, b) are still unknown. The expression of the function S
suggests that the displacement potential itself reads

φ(x, y, t) = H(x, y, t)

(

1 − x2

a2
− y2

b2

)3/2

(13)

where function H is some unknown function. Some elements of proof of that result can be found in Scolan
and Korobkin (2008). The boundary conditions (6) and (7) on Γ(t) are hence implicitely accounted for. By
taking the spatial derivatives of φ, and arriving at the planar Laplacian, we conclude that H is a constant
only function of time t, thus H does not depend on spatial coordinates (x, y).
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Identifying (14) and (9) lead to 3 additional equations to already established equations (10) to (12).
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That is enough to obtain (b00, b20, b02), (a, b) and H in terms of (A,B, h). In particular we can prove that
H is proportional to h, hence the displacement potential varies linearly with the penetration depth. The
final equations to be solved are

H = −2hb

3E
(16)
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where D = (K − E)/e2. From these last equations, we get

B2

A2
= k2 1 + k2D/E

2 − k2D/E
=

fA

fB
(19)

which is exactly equations (6.13) or (6.22) in Part I. The displacement potential is

φ(x, y, t) = −2hb

3E

(

1 − x2

a2
− y2

b2

)3/2

(20)

It is clear that no special assumptions have been made regarding the kinematics of the entering body. We
hence conclude that elliptic paraboloid entering liquid with arbitrary kinematics provide elliptic contact
line, always. Equation (19) proves that given the aspect ratio kγ = B/A, we obtain a unique aspect ratio
k = b/a as illustrated in the figure below
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As a consequence neither k, nor e depend on time, yielding

2hḃ = ḣb ⇒ h = αb2 (21)

and the coefficient α is obtained from one of the equations (17) or (18), yielding

b(t) =
√

hA
√

1 + k2D/E (22)

similar to eq. (6.14) in Part I. Without any assumptions, it remains an uncertainty regarding the expression
of the velocity potential (noted here ϕ) which should be given by eq. (4.10) of Part I. The time derivative
of the displacement potential reads

ϕ =
dφ

dt
=

√
F

(

ḢF +
3

2
HḞ

)

(23)

where F is defined by equation (1). The coefficient in brackets should be independent on spatial coordinates
(x, y). Therefore, by using (16) and ḃ is given by (21)

Ḣ = −2hḃ

E
= − ḣb

E
− hb

E

ḟA

fA
(24)

which means that we necessarily impose that ḟA ≡ 0 and ḟB ≡ 0 at any time. In other words an elliptic
paraboloid provides elliptic contact lines.

4) 3DoF motion of elliptic paraboloid
In this section, the elliptic paraboloid enters liquid with a vertical velicity ḣ(t), a horizontal velocity

U = ẋo and it starts a rotation around the y-direction when it hits the liquid. The inclination angle is α(t)
with α(0) = 0.

z = −h(t) + X sinα + Z cos α, x = xo(t) + X cos α − Z sin α, y = Y (25)

where X,Y,Z are the local and x, y, z global coordinates. We assume that h(t)/Rx ≪ 1, α = O(
√

h/Rx),
X,Y, xo(t) = O(

√
hRx), and Z = O(h) in the contact region between that entering body and the liquid.



Then X sinα = O(h), cos α = 1 + O(h/Rx), Z sin α/(X cos α) = O(h/Rx). Neglecting terms in (25) with
relative order of O(h/Rx) and higher, we obtain

x = xo(t) + X, z = −h(t) + Xα(t) + X2/A2 + Y 2/B2, (26)

and finally in the leading order

z = −
(

h(t) +
1

2
Rxα2(t)

)

+
(x − xo(t) + αRx)2

2Rx
+

y2

2Ry
(27)

The latter equation describes an elliptic paraboloid with the same curvature radius than the initial one
described by equation (8). It is convenient to introduce a modified penetration depth h̃(t) and the new
global coordinates x̃, ỹ as follows

h̃(t) = h +
1

2
Rxα2, x = xo − αRx + x̃

√

h̃Ry, y = ỹ

√

h̃Ry, z = z̃

√

h̃Ry, (28)

yielding a new displacement potential φ̃ (as described in Korobkin, 2002) which verifies a new Neumann

condition on the corrected wetted surface D̃ =
{

(x − x0(t) + αRx)2k2 + y2 < 2h̃(t)Rx(1 + k2D/E)
}

φ(x, y, z, t) = h̃

√

h̃ryφ̃(x̃, ỹ, z̃), φ̃,z̃ = −1 +
1

2

(

Ry

Rx

)

x̃2 +
1

2
ỹ2 (z̃ = 0, (x̃, ỹ) ∈ D̃). (29)

The problem of water entry with 3DoF has been reduced to the problem of vertical entry with constant
speed. The potential φ̃ depends on the only parameter ry/rx and is given by (20). However, the velocity
potential and the corresponding pressure distribution in the contact region are far from being trivial due to
the body rotation and its translation in x-direction. The impact stage with jetting all along the periphery
of the contact region lasts until the normal velocity of the contact line is zero at a single point, which is
expected to be the rear point of the contact line if ẋ0(t) > 0. The pressure in the contact region is of
particular interest with the zone of negative pressures starting at a point inside the region and approaching
the contact line at the rear point. A motion of an elliptic paraboloid with six degrees of freedom is considered
in a similar way without difficulties.
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5) Conclusion
Galin’s theorem appears as a powerful shortcut to prove some results exposed in Part I, at least when

the shape function can be represented as even polynomials of cartesian coordinates. However this theorem
is of no use as soon as the shape is pointed as for a cone. As a consequence of Galin’s theorem, it is also
shown that the entry of an elliptic paraboloid, animated along its 3DoF and even 6DoF, leads to elliptic
contact line and its eccentricity does not depend on the motions. Another question arises whether or not
Galin’s theorem can be extended to more complicated shape than an ellipse, for example a shape whose
contour is not convex. Preliminary calculations let us think that the problem is very tricky...
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