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Introduction

This paper examines the wave scattering by an infinite array of thin plates in the open ocean, used
for the purpose of wave energy extraction. Among the tasks necessary to describe the behaviour
of such a system and to optimise its efficiency, the analysis of the scattering of the incident waves
by the plates is of particular importance. Within the framework of a linear wave theory, the wave
power P extracted by a single element of the array when pitching in incident waves depends on
the square of the excitation torque F acting on the element when it is fixed in incoming waves, i.e.
P ∝ F 2 (Mei et al., 2005). The model adopted here is based on the theoretical work of Renzi &
Dias (2012), where a linear inviscid potential flow theory is devised for a single plate, either moving
or fixed, in a channel. Due to the mirroring effect of the channel walls, those results can also be
applied to describe the dynamics of an infinite array of plates in the open ocean.

In the following, the mathematical model of Renzi & Dias (2012) is summarised briefly. Then
application of the model to the present case is discussed. The shape of the scattered waves at
both sides of the plates is investigated. Asymptotic analysis of the wave field allows to obtain
new expressions for the reflection and transmission coefficients. The effect of the difference in free-
surface elevation at the sides of the plates in generating the excitation torque is then explained.
Resonance is shown to occur at the cut-off frequencies of the system, for which transverse waves
generated by the interaction of the incoming wave field with the array turn from propagating to
trapped near the plates. Finally, parametric analysis highlights the dependence of the wave field
and the excitation torque on the spacing between the plates. This analysis can be of interest either
for the design of effective breakwaters in coastal areas (see for example Porter & Evans, 1996) and
also for optimising power generating actions on a system of oscillating wave surge converters (Folley
et al., 2007).

Mathematical model

Consider an in-line array of identical rectangular plates hinged on a bottom foundation in an
ocean of constant depth h (see for example Porter & Evans, 1996). The scattering of a train of
monochromatic incident waves of amplitude A and frequency ω by such a system is investigated,
assuming the plates are fixed in incoming waves. Let w and b be the width of each plate and the
spatial period of the array respectively. Symmetry of the problem allows to reduce the geometry
to that of a single plate within two waveguides placed at a mutual distance b (Renzi & Dias, 2012).
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A Cartesian coordinate system is assumed, with the x direction orthogonal to the plates, the y
axis along the plate lineup and the z axis rising from the undisturbed water level z = 0, positive
upwards. Within the framework of a linear inviscid potential-flow theory, the velocity potential Φ
must satisfy the Laplace equation

∇2Φ(x, y, z, t) = 0 (1)

in the fluid domain. The kinematic-dynamic boundary condition on the free surface reads

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0, (2)

where g is the acceleration due to gravity. Absence of normal flux at the bottom and through the
waveguides requires

∂Φ

∂z
= 0, z = −h;

∂Φ

∂y
= 0, y = ±b/2 (3)

respectively. Finally, the no-flux boundary condition on the plate yields

∂Φ

∂x
= 0, x = ±0, |y| < w/2, (4)

where the thin-body approximation has been applied (Linton & McIver, 2001). Finally, the reflected
and transmitted wave field respectively on the weather side and the lee side of the plate must be
outgoing at large x. The set of governing equations (1)–(4) has been solved by Dalrymple &
Martin (1990), Williams & Crull (1993), Porter & Evans (1996), Molin et al. (2005) and Renzi
& Dias (2012) with different techniques. In the first three referenced works, the authors focus on
the determination of the reflection and transmission coefficients, while Molin et al. (2005) analyse
the free-surface elevation along the plate. Finally, Renzi & Dias (2012) investigate the resonant
behaviour of the excitation torque in a channel. However, a complete theory treating all these
aspects and their relative implications appears to be missing. Following the approach of Renzi
& Dias (2012), application of the Green integral theorem to the fluid domain yields an integral
equation for Φ, which is solved by decomposing the integrand into a singular part plus an analytic
function. Careful treatment of the singularity ultimately allows to write the potential in a new
fast-converging semi-analytical form:

Φ(x, y, z, t) = ΦI(x, y, z, t)− 1
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In the latter expression, ΦI is the well-known potential of a progressive plane wave (Mei et al.,
2005), k the wavenumber, Up the Chebyshev polynomials of second kind and order p ∈ N and

H
(1)
1 the Hankel function of first kind and first order. Finally, the βp, p = 0 . . . N ∈ N, are the

complex solutions of a system of linear equations which ensures that the boundary condition on the
plate (4) is respected. This system is solved numerically with a collocation scheme, therefore the
solution (5) is partly numerical. Once the velocity potential (5) is known, the free surface elevation
ζ(x, y, t) = −∂Φ/∂t and the excitation torque

F = −ρ

∫
SB

∂Φ/∂t · (z + h− c) dA [Nm]

are found accordingly, SB being the plate surface and ρ the water density. By applying the method
of stationary phase to evaluate the integral in (5) at large |x|, new asymptotic expressions of



Figure 1: Density plot of the free-surface elevation around a plate. Incident waves come from the
left. Half-plate is represented. Values are in metres.

the wave field can be obtained, from which new formulae for the zero-th order reflection and
transmission coefficients are found, respectively

R0 = −iπ/(4
√
2)wβ0 ω cosh kh

(
gh+ (g/ω)2 sinh2 kh

)−1/2
(6)

and
T0 = 1 + iπ/(4

√
2)wβ0 ω cosh kh

(
gh+ (g/ω)2 sinh2 kh

)−1/2
. (7)

Results

Calculations have been performed for a reference array of plates of width w = 18m and spatial
period b = 91.6m on a h = 10.9m deep ocean. The amplitude of the incoming wave is A = 0.3m
and its period T = 2π/ω = 7 s. Recall that this configuration is analogous to that of a single plate
in a channel of width b. Figure 1 shows the density plot of the free-surface elevation on a region
close to one of the plates. Incoming waves are partially obstructed by the plate and the free-surface
elevation is maximum in front of it. Wave crests bend to overcome the obstacle, showing a three-
dimensional refractive behaviour. In the meantime, the shading effect of the plate attenuates the
wave amplitude at the lee side. Difference in free-surface elevation between the weather side and
the lee side of the plate is ultimately responsible for the generation of the excitation torque F . The
latter is plotted in figure 2 together with the modules of the reflection and transmission coefficients
versus the ratio λ/b, varying the wavelength λ of the incident wave. Theoretical results compare
satisfactorily with experimental data in wave tank. Note that spikes on the torque and the reflection
and transmission coefficients occur at specific ratios λm/b = 1/m,m ∈ N. The latter correspond to
the cut-off wavelengths of the transverse modes generated by the interaction between the incoming
wave field and the array (Chen, 1994; Renzi & Dias, 2012). Each of the transverse modes is a
standing wave along y, while along x it turns from propagating to exponentially damped as soon
as λ → λm. The relevant wave energy is then trapped near the plates, inducing the spikes in the
plots of figure 2. This is a particularly favourable situation for an array of wave energy converters,
where the spacing b can be designed to tune the array to resonance, given the characteristics of the



Figure 2: Left panel: torque acting on a single flap versus wavelength-to-width ratio. The solid line
refers to the analytical results, while the markers refer to experimental data on a flap-type device
(Folley et al., 2007) for a similar geometry. Right panel: reflection and transmission coefficients
versus wavelength-to-width ratio for the same system.

incoming wave field. A strong point of the theoretical model is that it easily allows the investigation
of the parametric behaviour of the system’s main quantities with respect to the spacing b of the
plates. Parametric analysis is not included here for lack of space, but will be presented at the
Workshop.
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