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1 Introduction 
 

A number of  wave energy device developers have now successfully tank-tested scale-model 

prototypes and several are attempting full-scale deployment at sea [1]. Many believe the superior 

survivability of simple, buoy-like designs make them the most economically viable solutions [2, 3]. 

Developers of so called ‘point-absorbers’ hope to install multiple devices in arrays, offering 

considerable savings in terms of moorings, grid connections and maintenance. It is recognised that the 

additional hydrodynamic interactions between devices, from scattered and radiated waves within the 

array, can significantly alter the surface elevation and enhance the interaction factor, q, defined as the 

ratio of power from the array to that from the same number of isolated devices [4-6]. In contrast to 

traditional offshore structures, like floating platforms [7], enhancements due to these interactions 

could have practical benefit in the effective design of wave energy converter (WEC) arrays [8]. 

However, these interactions depend on numerous system variables leading to a complex array transfer 

function, referred to here as the Configuration Response Amplitude Operator (CRAO). There exists a 

CRAO specific to each possible configuration, consisting of a set of q-factors which describe the 

output of the array, compared to isolated devices, as a function of incident wave frequency and 

direction. Research directly concerning WEC arrays has focussed primarily on optimal response; 

however, there has been limited success in designing optimal array configurations over a range of 

incident wave conditions. Some novel control methods have been suggested [9, 10] and this work 

considers combining multiple oscillatory modes as one possible method, differing from the majority 

of the literature which considers single mode oscillation only (usually heave). 

Numerical modelling has become increasingly important in the assessment of a given concept 

before going to the expense of full scale deployment. There exist a number of complex numerical 

methods for solving the case by case diffraction and radiation problem for floating offshore structures 

like tension-leg platforms (TLPs). However, when designing WEC arrays, precise computation of the 

interactions between multiple floating bodies is widely considered too expensive to investigate the 

effects of various parameters efficiently [6, 11]. Therefore, there is still a need for simplified design 

tools which capture the essential hydrodynamic features without the need for computationally 

expensive simulations.  As shown here, progress can be made towards such a tool using superposition 

of analytical solutions, linear wave theory and various simplifications and approximations [4, 6]. 

In this work, the direct matrix method of Siddorn and Eatock Taylor [8] is utilised to find the 

surface elevation around a single, floating, ‘point-absorber’ WEC when subject to incident waves of 

different frequencies and directions. These results are then used to extend the heuristic ‘Parabolic 

Intersection’ method of Child and Venugopal [4] to enable fast array designs that include the 

diffraction and radiation interactions arising from floating devices. Superposition of the free surface 

behaviour around an isolated device is used to estimate the CRAOs for simple staggered arrays and 

assess the potential for improved frequency response through combined oscillation in heave and pitch. 

 

2 Numerical Method 
 

2.1 The Model Definition 
 

Each device consists of an axisymmetric, truncated, circular cylinder (radius a, draft (h-c)), 

floating vertically in water with constant depth h. The cylinders are secured to the seabed via a taut 

tether and the PTO is represented by a spring and damper system allowing oscillation in all six 

degrees of freedom.  This is a model which represents a wide range of realistic devices while allowing 

the associated computations to be performed efficiently [4].  

 



2.2 Harmonic Waves in Water 
 

The algebraic method of Siddorn and Eatock Taylor [8] uses the simplifying assumptions of 

linear potential flow and offers an approach which does not require discretisation of the fluid volume 

(only truncation of some series). This leads to a fast analytical solution to the diffraction and radiation 

of gravity waves around floating cylinders. All time-dependent quantities are assumed time-harmonic 

with the same frequency as the incident wave, ω. Therefore, throughout the fluid there exists a time-

dependent velocity potential which, written as a complex Fourier series in cylindrical coordinates 

originating from the intersection of the cylinder axis and the still water level, has the form: 
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What follows is a well-documented boundary value problem [8, 11, 12], the time-independent, 

complex spatial potential φ(r ,θ ,z) must satisfy Laplace’s equation everywhere within the fluid, 

subject to the linearized Neumann boundary conditions; on the seafloor, the free surface and at any 

point on the surface of the cylinder. 

 

2.3 Analysis of a single truncated cylinder 
 

For the diffracted wave field at the surface, the complex velocity potential around an isolated, 

stationary, truncated cylinder subjected to purely progressive, plane waves is expressed, in general 

terms, as the summation of cylindrical waves in the coordinate system of the cylinder [8].  

For the radiation problem of an oscillating truncated cylinder, in the absence of an incident wave, 

a complex velocity vector, u, assigns the amplitude and phase of the velocity/angular velocity of all 

six degrees of freedom by assuming each mode is periodic with the same frequency, ω. The 

introduction of these oscillations alters the boundary conditions allowing a finite fluid velocity on the 

cylinder surface and adds an inhomogeneous term to the velocity potential [8, 11]. 

In both cases a ‘direct-matrix’ method can be used to find the coefficients of a Fourier-Bessel 

series, satisfying the specific boundary conditions, by truncating and simultaneously solving two, 

infinite systems of equations after a finite number of evanescent and core modes [8]. 

 For the purpose of this analysis it has been assumed that the wave loading, and hence the 

power available to the device, depends directly on the local wave height. This makes it possible to 

analyse the effect of various system variables on the location of desirable device positions (where the 

local interaction factor, qn, is enhanced) through consideration of the surface elevation only. 

The surface elevation is found by integrating over the vertical component of the fluid velocity, at 

the surface, with respect to time: 

 (       )  ∫
  

  
|
   

     {
   

 
 

 

  

  
|
   
}      (2) 

 

2.4 Analysis of interference effects in a simple array 
 

To design optimised array configurations in a fast and computationally efficient manner, a 

process similar to Child and Venugopal’s ‘parabolic intersection’ (PI) method [4] has been developed. 

The PI method superposes wave interaction solutions, generated by isolated devices, to produce 

staggered array designs. Enhanced q-factors are achieved for a specific incident wave by positioning 

additional array members on the advantageous, down-wave intersections of parabolas resulting from 

constructive interference between the scattered and incident waves. Child and Venugopal [4] only 

optimise the array for a single incident wave frequency and direction and by ignoring the effect of 

radiated waves, the original PI design method approximates devices as fixed bodies. Furthermore, by 

constructing the array using only down-wave intersections, the original PI method neglects the effect 

devices have on array members up-wave of their position. 

In this analysis we extend the PI method to floating bodies by considering the additional 

interference arising from radiated waves. To demonstrate the potential of multiple mode oscillation, 

this work considers devices able to oscillate freely in heave and pitch, but the concept is easily 

extended to encompass all degrees of freedom and different forms of mechanical damping. Finally, 

the effects of incident wave frequency and direction are considered to complete the design tool. 

 



3 Results and Discussion 
 

Figure 1 shows the interference between incident waves of a specific frequency (propagating 

from left to right) and each of the interacted waves around an isolated device. The parabolic patterns 

between incident and scattered waves, found by Child and Venugopal [4], are apparent, and it can be 

seen that similar patterns arise between incident waves and those radiated by heave and pitch. The 

discontinuity in Figure 1(c) marks a line, parallel to the incident wave crest, over which the anti-

symmetric pitch wave has zero amplitude and a phase which reverses relative to the incident wave. 

As an example of the array design process, for an equilaterally staggered array (with device 

spacing = 40a) the position of an additional device, up-wave and down-wave, has been marked. For 

this specific configuration, incident wave frequency and direction, the down-wave position neither 

benefits nor suffers from interference due to radiation, however, the equivalent position up-wave 

experiences constructive interference when heaving and deconstructive interference when pitching. 
 

 
Figure 1: Phase relations between interacted waves ((a) scattered, (b) heave, (c) pitch) and incident waves for an 

isolated body at the free surface. White indicates completely in phase and black indicates completely out of 

phase. Device radius a = 1m, draught d =1m, water depth h = 8m, wave frequency, ω = 1.981rad s
-1

, equivalent 

to 5m buoy in water 40m deep and wave period of 5.9s [4]. x and y units are  metres/a. 
 

Figure 2 shows the phase relations between pairs of interacted waves, isolated from the incident 

waves. This gives an insight into optimal device locations and the array design concept by showing 

where interference effects, from Figure 1, can be combined to further enhance the output of additional 

devices. Down-wave; heave and pitch waves are in phase with each other (2(c)) and almost in phase 

with the scattered waves (particularly directly down wave) (2(a) and (b)). This suggests that devices 

oscillating in heave and pitch simultaneously could generate particularly advantageous positions down 

wave. However, up wave; pitch and heave are out of phase (2(c)) and neither combines with the 

scattered waves (2(a) and (b)), highlighting an important difference in effects up- and down-wave. 
 

Figure 2: Phase relations between pairs of interacted waves ((a) scattered + heave, (b) scattered + pitch, (c) 

heave + pitch), using the same parameters as Figure 1. White = in phase, black = out of phase. 
 

Furthermore, real sea states consist of many waves of different frequencies and headings. 

Presenting these interference patterns for a single frequency and direction can be misleading. The 

regions of constructive interference and so the optimisation method of aligning them is heavily reliant 

on the incident wave characteristics. Figure 3 gives an insight into how the regions in Figures 1 and 2 

vary with incident wave frequency by displaying the local interaction factor, qn, for the down-wave, 



3(a), and up-wave, 3(b), positions. The main observations are: Down-wave, due to the phase relations 

in Figure 2, radiation in pitch and heave generally act to increases the interference effects of the 

scattered waves but with a slightly reduced peak frequency. This enhances the constructive effects 

over a range of frequencies, but also compounds the deconstructive effects; Up-wave, the q-factor is 

much more sensitive to changes in frequency due to the behaviour of the parabolas in Figure 1. Due to 

the phase relations in Figure 2, heave now increases the frequency at which peaks in local q-factor 

occur, whereas pitch still decreases it. This suggests that for devices able to move selectively in heave 

and pitch, the frequency range over which enhanced q-factors occur could be improved. 

It is expected that variations in incident wave heading will have similarly interesting effects, on 

the q-factor, as the interference patterns are effectively rotated around the device. The combination of 

frequency and directional results would then form the complete CRAO for this simple array design. 

 
Figure 3: Frequency dependence of the q-factor, corresponding to the surface elevation enhancement, down-

wave (a) and up-wave (b), for a fixed device (dashed), heaving device (solid black) and pitching device (solid 

grey). The velocity amplitude has be fixed, over the entire frequency range, to simulate a device tuned to a 

particular frequency (uHeave = -iω0A, uPitch = ω0
3
A/g where A is the incident wave amplitude and ω0 = 1.981rad/s, 

is the tuning frequency), this helps to reduce unrealistically rapid oscillation at high frequencies. 

 

4 Conclusions and Further Work 
 

A rapid design concept for optimised arrays of floating WECs has been developed. In addition, 

multi-mode devices have been shown to have the potential to outperform single mode devices, over a 

wider frequency band. Further investigation into the directional dependence of these interactions, their 

effect on resonance effects and their implications on device survivability remains a task for the future 

along with comparisons with boundary element methods and experimental validation. 

 

References 
 

1. RenewableUK, Wave and tidal energy in the UK: State of the industry report - March 2011. 2011: London. 

2. McCabe, A.P., et al., Developments in the design of the PS Frog Mk 5 wave energy converter. Renewable 

Energy, 2006. 31(2): p. 141-151. 

3. Ocean Power Technologies. http://www.oceanpowertechnologies.com/tech.htm  [cited 14 August 2011]. 

4. Child, B.F.M. and V. Venugopal, Optimal configurations of wave energy device arrays. Ocean 

Engineering, 2010. 37(16): p. 1402-1417. 

5. Maniar, H.D. and J.N. Newman, Wave diffraction by a long array of cylinders. Journal of Fluid Mechanics, 

1997. 339: p. 309-330. 

6. McIver, P., Wave interaction with arrays of structures. Applied Ocean Research, 2002. 24(3): p. 121-126. 

7. Kim, M.H., Interaction of waves with N-vertical circular-cylinders. Journal of Waterway Port Coastal and 

Ocean Engineering-Asce, 1993. 119(6): p. 671-689. 

8. Siddorn, P. and R.E. Taylor, Diffraction and independent radiation by an array of floating cylinders. 

Ocean Engineering, 2008. 35(13): p. 1289-1303. 

9. Bellow, S., T. Stallard, and P.K. Stansby. Optimisation of a Heterogeneous Array of Heaving Bodies. in 

8th European Wave and Tidal Energy Conference. 2009. Uppsala, Sweden. 

10. Gilloteaux, J.C. and J.V. Ringwood. Control-informed geometric optimisation of wave energy converters. 

in IFAC Conference on Control Applications in Marine Systems (CAMS). 2010. Rostock. 

11. Yeung, R.W., Added mass and damping of a vertical cylinder in finite-depth waters. Applied Ocean 

Research, 1981. 3(3): p. 119-133. 

12. Garrett, C.J.R., Wave forces on a circular dock. Journal of Fluid Mechanics, 1971. 46(15): p. 129-139. 

(a) (b) 


